61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      O'nyong nyong Virus Molecular Determinants of Unique Vector Specificity Reside in Non-Structural Protein 3

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          O'nyong nyong virus (ONNV) and Chikungunya virus (CHIKV) are two closely related alphaviruses with very different infection patterns in the mosquito, Anopheles gambiae. ONNV is the only alphavirus transmitted by anopheline mosquitoes, but specific molecular determinants of infection of this unique vector specificity remain unidentified. Fifteen distinct chimeric viruses were constructed to evaluate both structural and non-structural regions of the genome and infection patterns were determined through artificial infectious feeds in An. gambiae with each of these chimeras. Only one region, non-structural protein 3 (nsP3), was sufficient to up-regulate infection to rates similar to those seen with parental ONNV. When ONNV non-structural protein 3 (nsP3) replaced nsP3 from CHIKV virus in one of the chimeric viruses, infection rates in An. gambiae went from 0% to 63.5%. No other single gene or viral region addition was able to restore infection rates. Thus, we have shown that a non-structural genome element involved in viral replication is a major element involved in ONNV's unique vector specificity.

          Author Summary

          O'nyong nyong virus (ONNV) is unique in that it is the only alphavirus, and one of few viruses in general, to be transmitted to humans by the bite of an anopheline mosquito. The genetics responsible for this unique vector specificity would be useful information in helping to develop antivirals, vaccines, and other methods for interrupting virus transmission. Previous research using other arboviruses has shown that specific viral genomic regions, amino acid sequences, or even single nucleotide mutations can have a profound effect on virus growth, infection, and virulence characteristics. Using chimeric viruses that substitute a gene from one virus with a gene from a closely related virus is a proven method of evaluating the relative contribution of each gene to a given phenotype. Our study analyzed both structural and non-structural regions of the ONNV genome using chimeric viruses and artificially infected Anopheles gambiae mosquitoes. When ONNV non-structural protein 3 (nsP3) replaced nsP3 from chikungunya virus in one of the chimeric viruses, infection rates in An. gambiae went from 0% to 63.5%. No other single gene or viral region addition was able to restore infection rates. That ONNV nsP3 is largely responsible for ONNV's unique ability to infect An. gambiae is especially interesting since the exact mechanisms and functions of this highly-variable protein remain poorly understood.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: not found
          • Article: not found

          Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences.

            Despite the rapid mutational change that is typical of positive-strand RNA viruses, enzymes mediating the replication and expression of virus genomes contain arrays of conserved sequence motifs. Proteins with such motifs include RNA-dependent RNA polymerase, putative RNA helicase, chymotrypsin-like and papain-like proteases, and methyltransferases. The genes for these proteins form partially conserved modules in large subsets of viruses. A concept of the virus genome as a relatively evolutionarily stable "core" of housekeeping genes accompanied by a much more flexible "shell" consisting mostly of genes coding for virion components and various accessory proteins is discussed. Shuffling of the "shell" genes including genome reorganization and recombination between remote groups of viruses is considered to be one of the major factors of virus evolution. Multiple alignments for the conserved viral proteins were constructed and used to generate the respective phylogenetic trees. Based primarily on the tentative phylogeny for the RNA-dependent RNA polymerase, which is the only universally conserved protein of positive-strand RNA viruses, three large classes of viruses, each consisting of distinct smaller divisions, were delineated. A strong correlation was observed between this grouping and the tentative phylogenies for the other conserved proteins as well as the arrangement of genes encoding these proteins in the virus genome. A comparable correlation with the polymerase phylogeny was not found for genes encoding virion components or for genome expression strategies. It is surmised that several types of arrangement of the "shell" genes as well as basic mechanisms of expression could have evolved independently in different evolutionary lineages. The grouping revealed by phylogenetic analysis may provide the basis for revision of virus classification, and phylogenetic taxonomy of positive-strand RNA viruses is outlined. Some of the phylogenetically derived divisions of positive-strand RNA viruses also include double-stranded RNA viruses, indicating that in certain cases the type of genome nucleic acid may not be a reliable taxonomic criterion for viruses. Hypothetical evolutionary scenarios for positive-strand RNA viruses are proposed. It is hypothesized that all positive-strand RNA viruses and some related double-stranded RNA viruses could have evolved from a common ancestor virus that contained genes for RNA-dependent RNA polymerase, a chymotrypsin-related protease that also functioned as the capsid protein, and possibly an RNA helicase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships.

              Chikungunya (CHIK) virus is a member of the genus Alphavirus in the family TOGAVIRIDAE: Serologically, it is most closely related to o'nyong-nyong (ONN) virus and is a member of the Semliki Forest antigenic complex. CHIK virus is believed to be enzootic throughout much of Africa and historical evidence indicates that it spread to other parts of the world from this origin. Strains from Africa and Asia are reported to differ biologically, indicating that distinct lineages may exist. To examine the relatedness of CHIK and ONN viruses using genetic data, we conducted phylogenetic studies on isolates obtained throughout Africa and Southeast Asia. Analyses revealed that ONN virus is indeed distinct from CHIK viruses, and these viruses probably diverged thousands of years ago. Two distinct CHIK virus lineages were delineated, one containing all isolates from western Africa and the second comprising all southern and East African strains, as well as isolates from Asia. Phylogenetic trees corroborated historical evidence that CHIK virus originated in Africa and subsequently was introduced into Asia. Within the eastern Africa and southern Africa/Asia lineage, Asian strains grouped together in a genotype distinct from the African groups. These different geographical genotypes exhibit differences in their transmission cycles: in Asia, the virus appears to be maintained in an urban cycle with Aedes aegypti mosquito vectors, while CHIK virus transmission in Africa involves a sylvatic cycle, primarily with AE: furcifer and AE: africanus mosquitoes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                January 2013
                24 January 2013
                : 7
                : 1
                : e1931
                Affiliations
                [1 ]Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
                [2 ]Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
                University of California, Berkeley, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KDSS JPL ECM AMP. Performed the experiments: KDSS JPL EMB JLS ECM AJS AMP. Analyzed the data: KDSS JPL ECM JW AMP. Contributed reagents/materials/analysis tools: JW AMP. Wrote the paper: KDSS JPL ECM JW AMP.

                Article
                PNTD-D-12-00427
                10.1371/journal.pntd.0001931
                3554527
                23359824
                f8643993-59d4-468e-b18f-6e0c94435e30
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 10 April 2012
                : 16 October 2012
                Page count
                Pages: 9
                Funding
                This work was funded by the Centers for Disease Control and Prevention (CDC) and in part by National Institutes of Health (NIH) grant AI47877. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Genetics
                Cloning
                Organismal Cloning
                Microbiology
                Virology
                Viral Classification
                RNA viruses
                Viral Transmission and Infection
                Host-Pathogen Interaction

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article