50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The WUS homeobox-containing (WOX) protein family

      research-article
      1 , 1 , 2 , 3 , 4 , 2 , 3 , 5 ,
      Genome Biology
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The plant-specific WOX family of homeobox proteins have key functions in plant development.

          Abstract

          The WOX genes form a plant-specific subclade of the eukaryotic homeobox transcription factor superfamily, which is characterized by the presence of a conserved DNA-binding homeodomain. The analysis of WOX gene expression and function shows that WOX family members fulfill specialized functions in key developmental processes in plants, such as embryonic patterning, stem-cell maintenance and organ formation. These functions can be related to either promotion of cell division activity and/or prevention of premature cell differentiation. The phylogenetic tree of the plant WOX proteins can be divided into three clades, termed the WUS, intermediate and ancient clade. WOX proteins of the WUS clade appear to some extent able to functionally complement other members. The specific function of individual WOX-family proteins is most probably determined by their spatiotemporal expression pattern and probably also by their interaction with other proteins, which may repress their transcriptional activity. The prototypic WOX-family member WUS has recently been shown to act as a bifunctional transcription factor, functioning as repressor in stem-cell regulation and as activator in floral patterning. Past research has mainly focused on part of the WOX protein family in some model flowering plants, such as Arabidopsis thaliana (thale cress) or Oryza sativa (rice). Future research, including so-far neglected clades and non-flowering plants, is expected to reveal how these master switches of plant differentiation and embryonic patterning evolved and how they fulfill their function.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes.

          The higher-plant shoot meristem is a dynamic structure whose maintenance depends on the coordination of two antagonistic processes, organ initiation and self-renewal of the stem cell population. In Arabidopsis shoot and floral meristems, the WUSCHEL (WUS) gene is required for stem cell identity, whereas the CLAVATA1, 2, and 3 (CLV) genes promote organ initiation. Our analysis of the interactions between these key regulators indicates that (1) the CLV genes repress WUS at the transcript level and that (2) WUS expression is sufficient to induce meristem cell identity and the expression of the stem cell marker CLV3. Our data suggest that the shoot meristem has properties of a self-regulatory system in which WUS/CLV interactions establish a feedback loop between the stem cells and the underlying organizing center.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers.

            Throughout the lifespan of a plant, which in some cases can last more than one thousand years, the stem cell niches in the root and shoot apical meristems provide cells for the formation of complete root and shoot systems, respectively. Both niches are superficially different and it has remained unclear whether common regulatory mechanisms exist. Here we address whether root and shoot meristems use related factors for stem cell maintenance. In the root niche the quiescent centre cells, surrounded by the stem cells, express the homeobox gene WOX5 (WUSCHEL-RELATED HOMEOBOX 5), a homologue of the WUSCHEL (WUS) gene that non-cell-autonomously maintains stem cells in the shoot meristem. Loss of WOX5 function in the root meristem stem cell niche causes terminal differentiation in distal stem cells and, redundantly with other regulators, also provokes differentiation of the proximal meristem. Conversely, gain of WOX5 function blocks differentiation of distal stem cell descendents that normally differentiate. Importantly, both WOX5 and WUS maintain stem cells in either a root or shoot context. Together, our data indicate that stem cell maintenance signalling in both meristems employs related regulators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana.

              During embryonic pattern formation, the main body axes are established and cells of different developmental fates are specified from a single-cell zygote. Despite the fundamental importance of this process, in plants, the underlying mechanisms are largely unknown. We show that expression dynamics of novel WOX (WUSCHEL related homeobox) gene family members reveal early embryonic patterning events in Arabidopsis. WOX2 and WOX8 are co-expressed in the egg cell and zygote and become confined to the apical and basal daughter cells of the zygote, respectively, by its asymmetric division. WOX2 not only marks apical descendants of the zygote, but is also functionally required for their correct development, suggesting that the asymmetric division of the plant zygote separates determinants of apical and basal cell fates. WOX9 expression is initiated in the basal daughter cell of the zygote and subsequently shifts into the descendants of the apical daughter apparently in response to signaling from the embryo proper. Expression of WOX5 shows that identity of the quiescent center is initiated very early in the hypophyseal cell, and highlights molecular and developmental similarities between the stem cell niches of root and shoot meristems. Together, our data suggest that during plant embryogenesis region-specific transcription programs are initiated very early in single precursor cells and that WOX genes play an important role in this process.
                Bookmark

                Author and article information

                Journal
                Genome Biol
                Genome Biology
                BioMed Central
                1465-6906
                1465-6914
                2009
                29 December 2009
                : 10
                : 12
                : 248
                Affiliations
                [1 ]Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
                [2 ]Freiburg Initiative for Systems Biology (FRISYS), University of Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Germany
                [3 ]Centre for Biological Signalling Studies (bioss), University of Freiburg, Albertstrasse 19, D-79104 Freiburg, Germany
                [4 ]Freiburg Institute of Advanced Studies (FRIAS), Albertstrasse 19, D-79104 Freiburg, Germany
                [5 ]Faculty of Biology, University of Freiburg, Hauptstrasse 1, D-79104 Freiburg, Germany
                Article
                gb-2009-10-12-248
                10.1186/gb-2009-10-12-248
                2812940
                20067590
                5fb9181a-6b62-4556-abe6-757426fe9e8f
                Copyright ©2009 BioMed Central Ltd
                History
                Categories
                Protein family review

                Genetics
                Genetics

                Comments

                Comment on this article