0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Construction of SLC16A1/3 Targeted Gallic Acid-Iron-Embelin Nanoparticles for Regulating Glycolysis and Redox Pathways in Cervical Cancer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The Warburg Effect: How Does it Benefit Cancer Cells?

          Cancer cells rewire their metabolism to promote growth, survival, proliferation, and long-term maintenance. The common feature of this altered metabolism is the increased glucose uptake and fermentation of glucose to lactate. This phenomenon is observed even in the presence of completely functioning mitochondria and, together, is known as the 'Warburg Effect'. The Warburg Effect has been documented for over 90 years and extensively studied over the past 10 years, with thousands of papers reporting to have established either its causes or its functions. Despite this intense interest, the function of the Warburg Effect remains unclear. Here, we analyze several proposed explanations for the function of Warburg Effect, emphasize their rationale, and discuss their controversies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Lactate: a metabolic key player in cancer.

            Increased glucose uptake and accumulation of lactate, even under normoxic conditions (i.e., aerobic glycolysis or the Warburg Effect), is a common feature of cancer cells. This phenomenon clearly indicates that lactate is not a surrogate of tumor hypoxia. Tumor lactate can predict for metastases and overall survival of patients, as shown by several studies of different entities. Metastasis of tumors is promoted by lactate-induced secretion of hyaluronan by tumor-associated fibroblasts that create a milieu favorable for migration. Lactate itself has been found to induce the migration of cells and cell clusters. Furthermore, radioresistance has been positively correlated with lactate concentrations, suggesting an antioxidative capacity of lactate. Findings on interactions of tumor metabolites with immune cells indicate a contribution of lactate to the immune escape. Furthermore, lactate bridges the gap between high lactate levels in wound healing, chronic inflammation, and cancer development. Tumor cells ensure sufficient oxygen and nutrient supply for proliferation through lactate-induced secretion of VEGF, resulting in the formation of new vessels. In summary, accumulation of lactate in solid tumors is a pivotal and early event in the development of malignancies. The determination of lactate should enter further clinical trials to confirm its relevance in cancer biology. ©2011 AACR
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of Cell Viability by the MTT Assay

              Among viability assays that depend on the conversion of substrate to chromogenic product by live cells, the MTT assay is still among one of the most versatile and popular assays. The MTT assay involves the conversion of the water-soluble yellow dye MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] to an insoluble purple formazan by the action of mitochondrial reductase. Formazan is then solubilized and the concentration determined by optical density at 570 nm. The result is a sensitive assay with excellent linearity up to ∼106 cells per well. As with the alamarBlue assay, small changes in metabolic activity can generate large changes in MTT, allowing one to detect cell stress upon exposure to a toxic agent in the absence of direct cell death. The assay has been standardized for adherent or nonadherent cells grown in multiple wells. The protocol uses a standard 96-well plate. This can be scaled up, however, to suit a different plate format. Plate 500-10,000 cells per well in a 96-well plate. The assay has good linearity up to 106 cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Molecular Pharmaceutics
                Mol. Pharmaceutics
                American Chemical Society (ACS)
                1543-8384
                1543-8392
                September 04 2023
                June 12 2023
                September 04 2023
                : 20
                : 9
                : 4574-4586
                Affiliations
                [1 ]Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Pharmacy, Shihezi 832003, Xinjiang, China
                [2 ]School of Medicine, Xinjiang University of Science & Technology, Korla, 841000, China
                [3 ]Shanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest Agriculture and Forestry University, Yangling, Shaanxi 712100, China
                [4 ]Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University College of Chemistry and Chemical Engineering, Shihezi 832002, Xinjiang, China
                [5 ]College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
                Article
                10.1021/acs.molpharmaceut.3c00294
                37307591
                ff508691-e6f7-4bc0-a527-614405ede523
                © 2023

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article