31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P4">Synapse density is reduced in postmortem cortical tissue from schizophrenia patients, which is suggestive of increased synapse elimination. Using a reprogrammed in vitro model of microglia-mediated synapse engulfment, we demonstrate increased synapse elimination in patient-derived neural cultures and isolated synaptosomes. This excessive synaptic pruning reflects abnormalities in both microglia-like cells and synaptic structures. Further, we find that schizophrenia risk-associated variants within the human complement component 4 locus are associated with increased neuronal complement deposition and synapse uptake; however, they do not fully explain the observed increase in synapse uptake. Finally, we demonstrate that the antibiotic minocycline reduces microglia-mediated synapse uptake in vitro and its use is associated with a modest decrease in incident schizophrenia risk compared to other antibiotics in a cohort of young adults drawn from electronic health records. These findings point to excessive pruning as a potential target for delaying or preventing the onset of schizophrenia in high-risk individuals. </p>

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia

          The pathophysiological characteristics of schizophrenia appear to involve altered synaptic connectivity in the dorsolateral prefrontal cortex. Given the central role that layer 3 pyramidal neurons play in corticocortical and thalamocortical connectivity, we hypothesized that the excitatory inputs to these neurons are altered in subjects with schizophrenia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy.

            Microglia, the intrinsic macrophages of the central nervous system, have previously been shown to be activated in the spinal cord in several rat mononeuropathy models. Activation of microglia and subsequent release of proinflammatory cytokines are known to play a role in inducing a behavioral hypersensitive state (hyperalgesia and allodynia) in these animals. The present study was undertaken to determine whether minocycline, an inhibitor of microglial activation, could attenuate both the development and existing mechanical allodynia and hyperalgesia in an L5 spinal nerve transection model of neuropathic pain. In a preventive paradigm (to study the effect on the development of hypersensitive behaviors), minocycline (10, 20, or 40 mg/kg intraperitoneally) was administered daily, beginning 1 h before nerve transection. This regimen produced a decrease in mechanical hyperalgesia and allodynia, with a maximum inhibitory effect observed at the dose of 20 and 40 mg/kg. The attenuation of the development of hyperalgesia and allodynia by minocycline was associated with an inhibitory action on microglial activation and suppression of proinflammatory cytokines at the L5 lumbar spinal cord of the nerveinjured animals. The effect of minocycline on existing allodynia was examined after its intraperitoneal administration initiated on day 5 post-L5 nerve transection. Although the postinjury administration of minocycline significantly inhibited microglial activation in neuropathic rats, it failed to attenuate existing hyperalgesia and allodynia. These data demonstrate that inhibition of microglial activation attenuated the development of behavioral hypersensitivity in a rat model of neuropathic pain but had no effect on the treatment of existing mechanical allodynia and hyperalgesia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder.

              Prior studies have demonstrated reduced dendritic spine density in the dorsolateral prefrontal cortex (DLPFC) in schizophrenia. However, it remains unclear how generalizable this finding is in schizophrenia and if it is seen in bipolar disorder, a historically distinct psychiatric condition.
                Bookmark

                Author and article information

                Journal
                Nature Neuroscience
                Nat Neurosci
                Springer Nature
                1097-6256
                1546-1726
                February 4 2019
                Article
                10.1038/s41593-018-0334-7
                6410571
                30718903
                d15d133d-d847-442e-b0a9-b113f3955eb1
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article