64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leishmania promastigotes: building a safe niche within macrophages

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upon their internalization by macrophages, Leishmania promastigotes inhibit phagolysosome biogenesis. The main factor responsible for this inhibition is the promastigote surface glycolipid lipophosphoglycan (LPG). This glycolipid has a profound impact on the phagosome, causing periphagosomal accumulation of F-actin and disruption of phagosomal lipid microdomains. Functionally, this LPG-mediated inhibition of phagosome maturation is characterized by an impaired assembly of the NADPH oxidase and the exclusion of the vesicular proton-ATPase from phagosomes. In this chapter, we review the current knowledge concerning the nature of the intra-macrophage compartment in which Leishmania donovani promastigotes establish infection. We also describe how LPG enables this parasite to remodel the parasitophorous vacuole.

          Related collections

          Most cited references65

          • Record: found
          • Abstract: found
          • Article: not found

          An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages.

          Specialized secretion systems are used by numerous bacterial pathogens to export virulence factors into host target cells. Leishmania and other eukaryotic intracellular pathogens also deliver effector proteins into host cells; however, the mechanisms involved have remained elusive. In this report, we identify exosome-based secretion as a general mechanism for protein secretion by Leishmania, and show that exosomes are involved in the delivery of proteins into host target cells. Comparative quantitative proteomics unambiguously identified 329 proteins in Leishmania exosomes, accounting for >52% of global protein secretion from these organisms. Our findings demonstrate that infection-like stressors (37 degrees C +/- pH 5.5) upregulated exosome release more than twofold and also modified exosome protein composition. Leishmania exosomes and exosomal proteins were detected in the cytosolic compartment of infected macrophages and incubation of macrophages with exosomes selectively induced secretion of IL-8, but not TNF-alpha. We thus provide evidence for an apparently broad-based mechanism of protein export by Leishmania. Moreover, we describe a mechanism for the direct delivery of Leishmania molecules into macrophages. These findings suggest that, like mammalian exosomes, Leishmania exosomes function in long-range communication and immune modulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification.

            Mycobacterium tuberculosis (Mtb) pathogenicity depends on its ability to inhibit phagosome acidification and maturation processes after engulfment by macrophages. Here, we show that the secreted Mtb protein tyrosine phosphatase (PtpA) binds to subunit H of the macrophage vacuolar-H(+)-ATPase (V-ATPase) machinery, a multisubunit protein complex in the phagosome membrane that drives luminal acidification. Furthermore, we show that the macrophage class C vacuolar protein sorting complex, a key regulator of endosomal membrane fusion, associates with V-ATPase in phagosome maturation, suggesting a unique role for V-ATPase in coordinating phagosome-lysosome fusion. PtpA interaction with host V-ATPase is required for the previously reported dephosphorylation of VPS33B and subsequent exclusion of V-ATPase from the phagosome during Mtb infection. These findings show that inhibition of phagosome acidification in the mycobacterial phagosome is directly attributed to PtpA, a key protein needed for Mtb survival and pathogenicity within host macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages.

              Phagocytosis is a key aspect of our innate ability to fight infectious diseases. In this study, we have found that fusion of the endoplasmic reticulum (ER) with the macrophage plasmalemma, underneath phagocytic cups, is a source of membrane for phagosome formation in macrophages. Successive waves of ER become associated with maturing phagosomes during phagolysosome biogenesis. Thus, the ER appears to possess unexpectedly pluripotent fusion properties. ER-mediated phagocytosis is regulated in part by phosphatidylinositol 3-kinase and used for the internalization of inert particles and intracellular pathogens, regardless of their final trafficking in the host. In neutrophils, where pathogens are rapidly killed, the ER is not used as a major source of membrane for phagocytosis. We propose that intracellular pathogens have evolved to adapt and exploit ER-mediated phagocytosis to avoid destruction in host cells.
                Bookmark

                Author and article information

                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Inf. Microbio.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                09 August 2012
                19 September 2012
                2012
                : 2
                : 121
                Affiliations
                simpleINRS - Institut Armand-Frappier and Center for Host-Parasite Interactions Laval, QC, Canada
                Author notes

                Edited by: Stephen M. Beverley, Washington University in St. Louis, USA

                Reviewed by: Anthony P. Sinai, University of Kentucky College of Medicine, USA; Jean Celli, NIH, USA

                *Correspondence: Albert Descoteaux, Institut National de la Recherche Scientifique, Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC H7V 1B7, Canada. e-mail: albert.descoteaux@ 123456iaf.inrs.ca
                Article
                10.3389/fcimb.2012.00121
                3445913
                23050244
                b4445f6e-55c0-460d-83f5-3e3f6a0075a0
                Copyright © 2012 Moradin and Descoteaux.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 05 July 2012
                : 04 September 2012
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 72, Pages: 7, Words: 5625
                Categories
                Microbiology
                Mini Review Article

                Infectious disease & Microbiology
                lipophosphoglycan,virulence,leishmania,macrophage,phagosome
                Infectious disease & Microbiology
                lipophosphoglycan, virulence, leishmania, macrophage, phagosome

                Comments

                Comment on this article