41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leishmania donovani Infection Causes Distinct Epigenetic DNA Methylation Changes in Host Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a possible mechanism for Leishmania driven deactivation of host defense. We quantified and detected genome-wide changes of cytosine methylation status in the macrophage genome resulting from L. donovani infection. A high confidence set of 443 CpG sites was identified with changes in methylation that correlated with live L. donovani infection. These epigenetic changes affected genes that play a critical role in host defense such as the JAK/STAT signaling pathway and the MAPK signaling pathway. These results provide strong support for a new paradigm in host-pathogen responses, where upon infection the pathogen induces epigenetic changes in the host cell genome resulting in downregulation of innate immunity thereby enabling pathogen survival and replication. We therefore propose a model whereby Leishmania induced epigenetic changes result in permanent down regulation of host defense mechanisms to protect intracellular replication and survival of parasitic cells.

          Author Summary

          The L. donovani parasite causes visceral leishmaniasis, a tropical, neglected disease with an estimated number of 500,000 cases worldwide. Current drug treatments have toxic side effects, lead to drug resistance, and an effective vaccine is not available. The parasite has a complex life cycle residing within different host environments including the gut of a sand fly and immune cells of the mammalian host. Alteration of host cell gene expression including signaling pathways has been shown to be a major strategy to evade host cell immune response and thus enables the Leishmania parasite to survive, replicate and persist in its host cells. Recently it was demonstrated that intracellular pathogens such as viruses and bacteria are able to manipulate epigenetic processes, thereby perhaps facilitating their intracellular survival. Using an unbiased genome-wide DNA methylation approach, we demonstrate here that an intracellular parasite can alter host cell DNA methylation patterns resulting in altered gene expression possibly to establish disease. Thus DNA methylation changes in host cells upon infection might be a common strategy among intracellular pathogens for their uncontrolled replication and dissemination.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          High density DNA methylation array with single CpG site resolution.

          We have developed a new generation of genome-wide DNA methylation BeadChip which allows high-throughput methylation profiling of the human genome. The new high density BeadChip can assay over 480K CpG sites and analyze twelve samples in parallel. The innovative content includes coverage of 99% of RefSeq genes with multiple probes per gene, 96% of CpG islands from the UCSC database, CpG island shores and additional content selected from whole-genome bisulfite sequencing data and input from DNA methylation experts. The well-characterized Infinium® Assay is used for analysis of CpG methylation using bisulfite-converted genomic DNA. We applied this technology to analyze DNA methylation in normal and tumor DNA samples and compared results with whole-genome bisulfite sequencing (WGBS) data obtained for the same samples. Highly comparable DNA methylation profiles were generated by the array and sequencing methods (average R2 of 0.95). The ability to determine genome-wide methylation patterns will rapidly advance methylation research. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            On the presence and role of human gene-body DNA methylation

            DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response

              The complicated interactions between Leishmania and the host antigen-presenting cells (APCs) have fundamental effects on the final outcome of the disease. Two major APCs, macrophages and dendritic cells (DCs), play critical roles in mediating resistance and susceptibility during Leishmania infection. Macrophages are the primary resident cell for Leishmania: they phagocytose and permit parasite proliferation. However, these cells are also the major effector cells to eliminate infection. The effective clearance of parasites by macrophages depends on activation of appropriate immune response, which is usually initiated by DCs. Here, we review the early interaction of APCs with Leishmania parasites and how these interactions profoundly impact on the ensuing adaptive immune response. We also discuss how the current knowledge will allow further refinement of our understanding of the interplay between Leishmania and its hosts that leads to resistance or susceptibility.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                October 2014
                9 October 2014
                : 10
                : 10
                : e1004419
                Affiliations
                [1 ]Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
                [2 ]Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
                [3 ]Human Early Learning Partnership, School of Population and Public Health, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
                University of Dundee, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: AKM JLM MSK WRM. Performed the experiments: AKM JLM AMA. Analyzed the data: AKM JLM RJ MSK WRM. Contributed reagents/materials/analysis tools: MSK WRM. Wrote the paper: AKM JLM RJ MSK WRM.

                Article
                PPATHOGENS-D-14-01251
                10.1371/journal.ppat.1004419
                4192605
                25299267
                4be35de6-0c6e-4856-9d70-95eee8dc334e
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 May 2014
                : 23 August 2014
                Page count
                Pages: 13
                Funding
                WRM research is supported by a grant from the Canadian Institutes of Health research, CIHR MOP-84531, www.cihr-irsc.gc.ca. MSK is a Senior Fellow of the Canadian Institute for Advanced Research, http://www.cifar.ca. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Medicine and Health Sciences
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article