169
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RNAseq Analysis of the Parasitic Nematode Strongyloides stercoralis Reveals Divergent Regulation of Canonical Dauer Pathways

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The infectious form of many parasitic nematodes, which afflict over one billion people globally, is a developmentally arrested third-stage larva (L3i). The parasitic nematode Strongyloides stercoralis differs from other nematode species that infect humans, in that its life cycle includes both parasitic and free-living forms, which can be leveraged to investigate the mechanisms of L3i arrest and activation. The free-living nematode Caenorhabditis elegans has a similar developmentally arrested larval form, the dauer, whose formation is controlled by four pathways: cyclic GMP (cGMP) signaling, insulin/IGF-1-like signaling (IIS), transforming growth factor β (TGFβ) signaling, and biosynthesis of dafachronic acid (DA) ligands that regulate a nuclear hormone receptor. We hypothesized that homologous pathways are present in S. stercoralis, have similar developmental regulation, and are involved in L3i arrest and activation. To test this, we undertook a deep-sequencing study of the polyadenylated transcriptome, generating over 2.3 billion paired-end reads from seven developmental stages. We constructed developmental expression profiles for S. stercoralis homologs of C. elegans dauer genes identified by BLAST searches of the S. stercoralis genome as well as de novo assembled transcripts. Intriguingly, genes encoding cGMP pathway components were coordinately up-regulated in L3i. In comparison to C. elegans, S. stercoralis has a paucity of genes encoding IIS ligands, several of which have abundance profiles suggesting involvement in L3i development. We also identified seven S. stercoralis genes encoding homologs of the single C. elegans dauer regulatory TGFβ ligand, three of which are only expressed in L3i. Putative DA biosynthetic genes did not appear to be coordinately regulated in L3i development. Our data suggest that while dauer pathway genes are present in S. stercoralis and may play a role in L3i development, there are significant differences between the two species. Understanding the mechanisms governing L3i development may lead to novel treatment and control strategies.

          Author Summary

          Parasitic nematodes infect over one billion people worldwide and cause many diseases, including strongyloidiasis, filariasis, and hookworm disease. For many of these parasites, including Strongyloides stercoralis, the infectious form is a developmentally arrested and long-lived thirdstage larva (L3i). Upon encountering a host, L3i quickly resume development and mature into parasitic adults. In the free-living nematode Caenorhabditis elegans, a similar developmentally arrested third-stage larva, known as the dauer, is regulated by four key cellular mechanisms. We hypothesized that similar cellular mechanisms control L3i arrest and activation. Therefore, we used deep-sequencing technology to characterize the S. stercoralis transcriptome (RNAseq), which allowed us to identify S. stercoralis homologs of components of these four mechanisms and examine their temporal regulation. We found similar temporal regulation between S. stercoralis and C. elegans for components of two mechanisms, but dissimilar temporal regulation for two others, suggesting conserved as well as novel modes of developmental regulation for L3i. Understanding L3i development may lead to novel control strategies as well as new treatments for strongyloidiasis and other diseases caused by parasitic nematodes.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling.

          The lifespan of Caenorhabditis elegans is regulated by the insulin/insulin-like growth factor (IGF)-1 receptor homolog DAF-2, which signals through a conserved phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Mutants in this pathway remain youthful and active much longer than normal animals and can live more than twice as long. This lifespan extension requires DAF-16, a forkhead/winged-helix transcription factor. DAF-16 is thought to be the main target of the DAF-2 pathway. Insulin/IGF-1 signaling is thought to lead to phosphorylation of DAF-16 by AKT activity, which in turn shortens lifespan. Here, we show that the DAF-2 pathway prevents DAF-16 accumulation in nuclei. Disrupting Akt-consensus phosphorylation sites in DAF-16 causes nuclear accumulation in wild-type animals, but, surprisingly, has little effect on lifespan. Thus the DAF-2 pathway must have additional outputs. Lifespan in C. elegans can be extended by perturbing sensory neurons or germ cells. In both cases, lifespan extension requires DAF-16. We find that both sensory neurons and germline activity regulate DAF-16 accumulation in nuclei, but the nuclear localization patterns are different. Together these findings reveal unexpected complexity in the DAF-16-dependent pathways that regulate aging.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The microRNAs of Caenorhabditis elegans.

            MicroRNAs (miRNAs) are an abundant class of tiny RNAs thought to regulate the expression of protein-coding genes in plants and animals. In the present study, we describe a computational procedure to identify miRNA genes conserved in more than one genome. Applying this program, known as MiRscan, together with molecular identification and validation methods, we have identified most of the miRNA genes in the nematode Caenorhabditis elegans. The total number of validated miRNA genes stands at 88, with no more than 35 genes remaining to be detected or validated. These 88 miRNA genes represent 48 gene families; 46 of these families (comprising 86 of the 88 genes) are conserved in Caenorhabditis briggsae, and 22 families are conserved in humans. More than a third of the worm miRNAs, including newly identified members of the lin-4 and let-7 gene families, are differentially expressed during larval development, suggesting a role for these miRNAs in mediating larval developmental transitions. Most are present at very high steady-state levels-more than 1000 molecules per cell, with some exceeding 50,000 molecules per cell. Our census of the worm miRNAs and their expression patterns helps define this class of noncoding RNAs, lays the groundwork for functional studies, and provides the tools for more comprehensive analyses of miRNA genes in other species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span.

              The highly conserved target-of-rapamycin (TOR) protein kinases control cell growth in response to nutrients and growth factors. In mammals, TOR has been shown to interact with raptor to relay nutrient signals to downstream translation machinery. We report that in C. elegans, mutations in the genes encoding CeTOR and raptor result in dauer-like larval arrest, implying that CeTOR regulates dauer diapause. The daf-15 (raptor) and let-363 (CeTOR) mutants shift metabolism to accumulate fat, and raptor mutations extend adult life span. daf-15 transcription is regulated by DAF-16, a FOXO transcription factor that is in turn regulated by daf-2 insulin/IGF signaling. This is a new mechanism that regulates the TOR pathway. Thus, DAF-2 insulin/IGF signaling and nutrient signaling converge on DAF-15 (raptor) to regulate C. elegans larval development, metabolism and life span.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                October 2012
                25 October 2012
                : 6
                : 10
                : e1854
                Affiliations
                [1 ]Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
                [2 ]Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
                [3 ]Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
                University of Melbourne, Australia
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JDS SM JBL. Performed the experiments: JDS. Analyzed the data: JDS. Contributed reagents/materials/analysis tools: JDS SM MB TJN. Wrote the paper: JDS.

                Article
                PNTD-D-12-00834
                10.1371/journal.pntd.0001854
                3493385
                23145190
                b15debe3-346b-4bd6-b3f0-0ac2ab01917b
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 10 July 2012
                : 26 August 2012
                Page count
                Pages: 24
                Funding
                This work was supported by U.S. National Institutes of Health (NIH) research grants AI50688 and AI22662 to JBL and RR02512 to Mark Haskins. MB is funded by the Wellcome Trust grant WT 098051. NIH training grant AI007532 helped to support JDS and AI060516 helped to support SM. This work was supported in part by the Penn Genome Frontiers Institute and a grant with the Pennsylvania Department of Health. The Department of Health specifically disclaims responsibility for any analyses, interpretations, or conclusions. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Gene Prediction
                Transcriptomes
                Sequence Analysis
                Microbiology
                Host-Pathogen Interaction
                Parasitology
                Pathogenesis
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Insulin Signaling Cascade
                TGF-beta signaling cascade
                Membrane Receptor Signaling
                Nuclear Receptor Signaling
                Medicine
                Infectious Diseases
                Neglected Tropical Diseases
                Strongyloidiasis
                Parasitic Diseases
                Soil-Transmitted Helminths
                Strongyloidiasis

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article