153
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of ATRX, Genome Instability, and an Altered DNA Damage Response Are Hallmarks of the Alternative Lengthening of Telomeres Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent pathway for telomere maintenance that is active in a significant subset of human cancers and in vitro immortalized cell lines. ALT is thought to involve templated extension of telomeres through homologous recombination, but the genetic or epigenetic changes that unleash ALT are not known. Recently, mutations in the ATRX/DAXX chromatin remodeling complex and histone H3.3 were found to correlate with features of ALT in pancreatic neuroendocrine cancers, pediatric glioblastomas, and other tumors of the central nervous system, suggesting that these mutations might contribute to the activation of the ALT pathway in these cancers. We have taken a comprehensive approach to deciphering ALT by applying genomic, molecular biological, and cell biological approaches to a panel of 22 ALT cell lines, including cell lines derived in vitro. Here we show that loss of ATRX protein and mutations in the ATRX gene are hallmarks of ALT–immortalized cell lines. In addition, ALT is associated with extensive genome rearrangements, marked micronucleation, defects in the G2/M checkpoint, and altered double-strand break (DSB) repair. These attributes will facilitate the diagnosis and treatment of ALT positive human cancers.

          Author Summary

          Telomeres, the protective elements at the ends of chromosomes, need to be maintained for cells to proliferate indefinitely. In many human cancers, the telomeric DNA is replenished by telomerase. However, a second pathway for telomere maintenance, referred to as the ALT pathway, has increasingly been recognized in human cancers. The genetic basis for activation of ALT is not known, but recent data have implicated a chromatin remodeling complex (ATRX/DAXX) and the histone variant H3.3 as players in the repression of ALT. We have examined a large panel of ALT cell lines for their genetic and cell biological features and found that loss of ATRX is a common event in the genesis of ALT lines. In addition, we document that ALT cell lines frequently undergo chromosomal changes and are impaired in their ability to detect and repair damage in their DNA. These hallmarks of ALT are expected to facilitate the detection of ALT–type tumors in the clinic and may lead to ALT–specific treatments.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines.

          The gradual loss of DNA from the ends of telomeres has been implicated in the control of cellular proliferative potential. Telomerase is an enzyme that restores telomeric DNA sequences, and expression of its activity was thought to be essential for the immortalization of human cells, both in vitro and in tumor progression in vivo. Telomerase activity has been detected in 50-100% of tumors of different types, but not in most normal adult somatic tissues. It has also been detected in about 70% of human cell lines immortalized in vitro and in all tumor-derived cell lines examined to date. It has previously been shown that in vitro immortalized telomerase-negative cell lines acquire very long and heterogeneous telomeres in association with immortalization presumably via one or more novel telomere-lengthening mechanisms that we refer to as ALT (alternative lengthening of telomeres). Here we report evidence for the presence of ALT in a subset of tumor-derived cell lines and tumors. The maintenance of telomeres by a mechanism other than telomerase, even in a minority of cancers, has major implications for therapeutic uses of telomerase inhibitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity.

            Loss of telomeric DNA during cell proliferation may play a role in ageing and cancer. Since telomeres permit complete replication of eukaryotic chromosomes and protect their ends from recombination, we have measured telomere length, telomerase activity and chromosome rearrangements in human cells before and after transformation with SV40 or Ad5. In all mortal populations, telomeres shortened by approximately 65 bp/generation during the lifespan of the cultures. When transformed cells reached crisis, the length of the telomeric TTAGGG repeats was only approximately 1.5 kbp and many dicentric chromosomes were observed. In immortal cells, telomere length and frequency of dicentric chromosomes stabilized after crisis. Telomerase activity was not detectable in control or extended lifespan populations but was present in immortal populations. These results suggest that chromosomes with short (TTAGGG)n tracts are recombinogenic, critically shortened telomeres may be incompatible with cell proliferation and stabilization of telomere length by telomerase may be required for immortalization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice.

              Aged humans sustain a high rate of epithelial cancers such as carcinomas of the breast and colon, whereas mice carrying common tumour suppressor gene mutations typically develop soft tissue sarcomas and lymphomas. Among the many factors that may contribute to this species variance are differences in telomere length and regulation. Telomeres comprise the nucleoprotein complexes that cap the ends of eukaryotic chromosomes and are maintained by the reverse transcriptase, telomerase. In human cells, insufficient levels of telomerase lead to telomere attrition with cell division in culture and possibly with ageing and tumorigenesis in vivo. In contrast, critical reduction in telomere length is not observed in the mouse owing to promiscuous telomerase expression and long telomeres. Here we provide evidence that telomere attrition in ageing telomerase-deficient p53 mutant mice promotes the development of epithelial cancers by a process of fusion-bridge breakage that leads to the formation of complex non-reciprocal translocations--a classical cytogenetic feature of human carcinomas. Our data suggest a model in which telomere dysfunction brought about by continual epithelial renewal during life generates the massive ploidy changes associated with the development of epithelial cancers.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2012
                July 2012
                19 July 2012
                : 8
                : 7
                : e1002772
                Affiliations
                [1 ]Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, New York, United States of America
                [2 ]Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [3 ]Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [4 ]Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
                [5 ]Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
                [6 ]Department of Microbiology and Immunology, W. R. Hearst Microbiology Research Center, Weill Medical College, Cornell University, New York, New York, United States of America
                [7 ]Children's Medical Research Institute, Westmead, New South Wales, Australia
                [8 ]Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
                [9 ]Ludwig Center for Cancer Genetics and Therapeutics, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, United States of America
                [10 ]Howard Hughes Medical Institutions, Johns Hopkins Sidney Kimmel Cancer Center, Baltimore, Maryland, United States of America
                [11 ]Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
                SA Pathology, Australia
                Author notes

                Conceived and designed the experiments: NP BV TdL JHJP WCH MJ NFL AKM. Performed the experiments: NP BV KK YJ CAL JB WL ST SR TdL SD JHJP BAW JR MH LM YZ EI WCH PAS CH. Analyzed the data: NP BV TdL JHJP WCH MJ NFL. Contributed reagents/materials/analysis tools: RRR. Wrote the paper: TdL JHJP WCH.

                Article
                PGENETICS-D-12-00435
                10.1371/journal.pgen.1002772
                3400581
                22829774
                9111e09a-4798-4d51-a89f-97c96408528f
                Lovejoy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 February 2012
                : 4 May 2012
                Page count
                Pages: 16
                Categories
                Research Article
                Biology
                Medicine

                Genetics
                Genetics

                Comments

                Comment on this article