Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
297
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling.

      1 , , ,
      Nature genetics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The lifespan of Caenorhabditis elegans is regulated by the insulin/insulin-like growth factor (IGF)-1 receptor homolog DAF-2, which signals through a conserved phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Mutants in this pathway remain youthful and active much longer than normal animals and can live more than twice as long. This lifespan extension requires DAF-16, a forkhead/winged-helix transcription factor. DAF-16 is thought to be the main target of the DAF-2 pathway. Insulin/IGF-1 signaling is thought to lead to phosphorylation of DAF-16 by AKT activity, which in turn shortens lifespan. Here, we show that the DAF-2 pathway prevents DAF-16 accumulation in nuclei. Disrupting Akt-consensus phosphorylation sites in DAF-16 causes nuclear accumulation in wild-type animals, but, surprisingly, has little effect on lifespan. Thus the DAF-2 pathway must have additional outputs. Lifespan in C. elegans can be extended by perturbing sensory neurons or germ cells. In both cases, lifespan extension requires DAF-16. We find that both sensory neurons and germline activity regulate DAF-16 accumulation in nuclei, but the nuclear localization patterns are different. Together these findings reveal unexpected complexity in the DAF-16-dependent pathways that regulate aging.

          Related collections

          Author and article information

          Journal
          Nat Genet
          Nature genetics
          Springer Science and Business Media LLC
          1061-4036
          1061-4036
          Jun 2001
          : 28
          : 2
          Affiliations
          [1 ] Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California, USA.
          Article
          88850
          10.1038/88850
          11381260
          5913b83e-250f-4e38-80d3-9e7abbbd0447
          History

          Comments

          Comment on this article

          scite_
          0
          0
          0
          0
          Smart Citations
          0
          0
          0
          0
          Citing PublicationsSupportingMentioningContrasting
          View Citations

          See how this article has been cited at scite.ai

          scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

          Similar content458

          Cited by321