5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Downregulation of miR-3934-5p enhances A549 cell sensitivity to cisplatin by targeting TP53INP1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tumor protein p53-inducible nuclear protein 1 (TP53INP1) is a tumor suppressor associated with malignant tumor metastasis. In addition, it has been reported that hsa-microRNA (miR)-3934 serves key roles in various types of lung cancer, including small-cell lung carcinomas (SCLC) and non-SCLC (NSCLC). Therefore, the present study aimed to determine the effects of miR-3934-5p on cell proliferation and apoptosis, and on sensitivity to cisplatin (DDP). Reverse transcription-quantitative polymerase chain reaction analysis and western blotting were conducted for the analysis of mRNA and protein expression, respectively. Furthermore, the target of miR-3934-5p was investigated using a luciferase reporter assay and apoptosis was analyzed by flow cytometry. The results demonstrated that miR-3934-5p was upregulated in NSCLC tissues and A549 cells. Increases in the half-maximal inhibitory concentration (IC 50) and the expression of miR-3934-5p were observed in the A549/DDP group. miR-3934-5p mimic promoted the expression of miR-3934-5p and the IC 50 of the A549 cells. miR-3934-5p inhibitor downregulated miR-3934-5p and reduced the IC 50 of A549/DDP cells. miR-3934-5p was revealed to target the 3′-untranslated region of TP53INP1. The downregulation of miR-3934-5p significantly suppressed the proliferation and promoted the apoptosis of A549/DDP cells, which were reversed by transfection with TP53INP1 small interfering (si)RNA. The protein and mRNA expression levels of TP53INP1, B-cell lymphoma 2 (Bcl-2)-associated-X and p21 were significantly increased, whereas those of Bcl-2 were significantly decreased in the miR-3934-5p inhibitor group, which was significantly reduced by TP53INP1 siRNA transfection. miR-3934-5p, as a tumor suppressor in NSCLC, may promote the sensitivity of cells to DDP by targeting TP53INP1, associated with the suppression of cell proliferation and promotion of apoptosis.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Targeting BCL-2 regulated apoptosis in cancer

          The ability of a cell to undergo mitochondrial apoptosis is governed by pro- and anti-apoptotic members of the BCL-2 protein family. The equilibrium of pro- versus anti-apoptotic BCL-2 proteins ensures appropriate regulation of programmed cell death during development and maintains organismal health. When unbalanced, the BCL-2 family can act as a barrier to apoptosis and facilitate tumour development and resistance to cancer therapy. Here we discuss the BCL-2 family, their deregulation in cancer and recent pharmaceutical developments to target specific members of this family as cancer therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            MicroRNAs as Potential Biomarkers in Cancer: Opportunities and Challenges

            MicroRNAs (miRNAs) are a group of small noncoding RNAs (ncRNAs) that posttranscriptionally regulate gene expression by targeting their corresponding messenger RNAs (mRNAs). Dysregulated miRNAs have been considered as a new type of ‘‘oncomiRs” or ‘‘tumor suppressors,” playing essential roles in cancer initiation and progression. Using genome-wide detection methods, ubiquitously aberrant expression profiles of miRNAs have been identified in a broad array of human cancers, showing great potential as novel diagnostic and prognostic biomarkers of cancer with high specificity and sensitivity. The detectable miRNAs in tissue, blood, and other body fluids with high stability provide an abundant source for miRNA-based biomarkers in human cancers. Despite the fact that an increasing number of potential miRNA biomarkers have been reported, the transition of miRNAs-based biomarkers from bench to bedside still necessitates addressing several challenges. In this review, we will summarize our current understanding of miRNAs as potential biomarkers in human cancers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest

              The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                September 2019
                01 July 2019
                01 July 2019
                : 18
                : 3
                : 1653-1660
                Affiliations
                [1 ]Department of Oncology, The People's Hospital of Yucheng, Yucheng, Shandong 251200, P.R. China
                [2 ]Department of Oncology, The People's Hospital of Leling, Leling, Shandong 253600, P.R. China
                Author notes
                Correspondence to: Dr Liangjie Zheng, Department of Oncology, The People's Hospital of Leling, 18 Anju Road, Leling, Shandong 253600, P.R. China, E-mail: liangjiezheng@ 123456yandex.com
                Article
                ETM-0-0-7718
                10.3892/etm.2019.7718
                6676217
                31410122
                afa06e9a-82df-4ac2-8cd3-3c64939e30ec
                Copyright: © Ren et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 20 July 2018
                : 31 May 2019
                Categories
                Articles

                Medicine
                microrna-3934,cisplatin sensitivity,tumor protein p53-inducible nuclear protein 1,non-small cell lung carcinoma

                Comments

                Comment on this article