0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bipolar device fabrication using a scanning tunnelling microscope

      , , , ,
      Nature Electronics
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A single-atom transistor.

          The ability to control matter at the atomic scale and build devices with atomic precision is central to nanotechnology. The scanning tunnelling microscope can manipulate individual atoms and molecules on surfaces, but the manipulation of silicon to make atomic-scale logic circuits has been hampered by the covalent nature of its bonds. Resist-based strategies have allowed the formation of atomic-scale structures on silicon surfaces, but the fabrication of working devices-such as transistors with extremely short gate lengths, spin-based quantum computers and solitary dopant optoelectronic devices-requires the ability to position individual atoms in a silicon crystal with atomic precision. Here, we use a combination of scanning tunnelling microscopy and hydrogen-resist lithography to demonstrate a single-atom transistor in which an individual phosphorus dopant atom has been deterministically placed within an epitaxial silicon device architecture with a spatial accuracy of one lattice site. The transistor operates at liquid helium temperatures, and millikelvin electron transport measurements confirm the presence of discrete quantum levels in the energy spectrum of the phosphorus atom. We find a charging energy that is close to the bulk value, previously only observed by optical spectroscopy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Storing quantum information for 30 seconds in a nanoelectronic device

            The spin of an electron or a nucleus in a semiconductor naturally implements the unit of quantum information--the qubit. In addition, because semiconductors are currently used in the electronics industry, developing qubits in semiconductors would be a promising route to realize scalable quantum information devices. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms, or charge and spin fluctuations arising from defects in oxides and interfaces. For materials such as silicon, enrichment of the spin-zero (28)Si isotope drastically reduces spin-bath decoherence. Experiments on bulk spin ensembles in (28)Si crystals have indeed demonstrated extraordinary coherence times. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here, we present the coherent operation of individual (31)P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered (28)Si substrate. The (31)P nuclear spin sets the new benchmark coherence time (>30 s with Carr-Purcell-Meiboom-Gill (CPMG) sequence) of any single qubit in the solid state and reaches >99.99% control fidelity. The electron spin CPMG coherence time exceeds 0.5 s, and detailed noise spectroscopy indicates that--contrary to widespread belief--it is not limited by the proximity to an interface. Instead, decoherence is probably dominated by thermal and magnetic noise external to the device, and is thus amenable to further improvement.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Nature Electronics
                Nat Electron
                Springer Science and Business Media LLC
                2520-1131
                September 2020
                July 27 2020
                : 3
                : 9
                : 524-530
                Article
                10.1038/s41928-020-0445-5
                a4259004-0617-4240-be90-7c1d802d1072
                © 2020

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article