2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification of DHODH as a therapeutic target in small cell lung cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small cell lung cancer (SCLC) is an aggressive lung cancer subtype with extremely poor prognosis. No targetable genetic driver events have been identified, and the treatment landscape for this disease has remained nearly unchanged for over 30 years. Here, we have taken a CRISPR-based screening approach to identify genetic vulnerabilities in SCLC that may serve as potential therapeutic targets. We used a single-guide RNA (sgRNA) library targeting ~5000 genes deemed to encode “druggable” proteins to perform loss-of-function genetic screens in a panel of cell lines derived from autochthonous genetically engineered mouse models (GEMMs) of SCLC, lung adenocarcinoma (LUAD), and pancreatic ductal adenocarcinoma (PDAC). Cross-cancer analyses allowed us to identify SCLC-selective vulnerabilities. In particular, we observed enhanced sensitivity of SCLC cells toward disruption of the pyrimidine biosynthesis pathway. Pharmacological inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in this pathway, reduced the viability of SCLC cells in vitro and strongly suppressed SCLC tumor growth in human patient-derived xenograft (PDX) models and in an autochthonous mouse model. These results indicate that DHODH inhibition may be an approach to treat SCLC.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis.

          Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late-stage primary tumors were found to target a small set of genes, suggesting that specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top-scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Small cell lung cancer: where do we go from here?

            Small cell lung cancer (SCLC) is an aggressive disease that accounts for approximately 14% of all lung cancers. In the United States, approximately 31,000 patients are diagnosed annually with SCLC. Despite numerous clinical trials, including at least 40 phase 3 trials since the 1970s, systemic treatment for patients with SCLC has not changed significantly in the past several decades. Consequently, the 5-year survival rate remains low at <7% overall, and most patients survive for only 1 year or less after diagnosis. Unlike nonsmall cell lung cancer (NSCLC), in which major advances have been made using targeted therapies, there are still no approved targeted drugs for SCLC. Significant barriers to progress in SCLC include 1) a lack of early detection modalities, 2) limited tumor tissue for translational research (eg, molecular profiling of DNA, RNA, and/or protein alterations) because of small diagnostic biopsies and the rare use of surgical resection in standard treatment, and 3) rapid disease progression with poor understanding of the mechanisms contributing to therapeutic resistance. In this report, the authors review the current state of SCLC treatment, recent advances in current understanding of the underlying disease biology, and opportunities to advance translational research and therapeutic approaches for patients with SCLC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition.

              Loss of the tumor suppressors RB1 and TP53 and MYC amplification are frequent oncogenic events in small cell lung cancer (SCLC). We show that Myc expression cooperates with Rb1 and Trp53 loss in the mouse lung to promote aggressive, highly metastatic tumors, that are initially sensitive to chemotherapy followed by relapse, similar to human SCLC. Importantly, MYC drives a neuroendocrine-low "variant" subset of SCLC with high NEUROD1 expression corresponding to transcriptional profiles of human SCLC. Targeted drug screening reveals that SCLC with high MYC expression is vulnerable to Aurora kinase inhibition, which, combined with chemotherapy, strongly suppresses tumor progression and increases survival. These data identify molecular features for patient stratification and uncover a potential targeted treatment approach for MYC-driven SCLC.
                Bookmark

                Author and article information

                Journal
                Science Translational Medicine
                Sci. Transl. Med.
                American Association for the Advancement of Science (AAAS)
                1946-6234
                1946-6242
                November 06 2019
                November 06 2019
                November 06 2019
                November 06 2019
                : 11
                : 517
                : eaaw7852
                Article
                10.1126/scitranslmed.aaw7852
                7401885
                31694929
                7bcc1f9e-b52f-4344-923a-ad78c8bd1bda
                © 2019

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article