5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ferroptosis in liver disease: new insights into disease mechanisms

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterized by excessive iron accumulation and lipid peroxidation, ferroptosis is a novel form of iron-dependent cell death, which is morphologically, genetically, and biochemically distinct from other well-known cell death. In recent years, ferroptosis has been quickly gaining attention in the field of liver diseases, as the liver is predisposed to oxidative injury and generally, excessive iron accumulation is a primary characteristic of most major liver diseases. In the current review, we first delineate three cellular defense mechanisms against ferroptosis (GPx4 in the mitochondria and cytosol, FSP1 on plasma membrane, and DHODH in mitochondria), along with four canonical modulators of ferroptosis (system Xc , nuclear factor erythroid 2-related factor 2, p53, and GTP cyclohydrolase-1). Next, we review recent progress of ferroptosis studies delineating molecular mechanisms underlying the pathophysiology of several common liver diseases including ischemia/reperfusion-related injury (IRI), nonalcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), hemochromatosis (HH), drug-induced liver injury (DILI), and hepatocellular carcinoma (HCC). Furthermore, we also highlight both challenges and promises that emerged from recent studies that should be addressed and pursued in future investigations before ferroptosis regulation could be adopted as an effective therapeutic target in clinical practice.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Ferroptosis: an iron-dependent form of nonapoptotic cell death.

          Nonapoptotic forms of cell death may facilitate the selective elimination of some tumor cells or be activated in specific pathological states. The oncogenic RAS-selective lethal small molecule erastin triggers a unique iron-dependent form of nonapoptotic cell death that we term ferroptosis. Ferroptosis is dependent upon intracellular iron, but not other metals, and is morphologically, biochemically, and genetically distinct from apoptosis, necrosis, and autophagy. We identify the small molecule ferrostatin-1 as a potent inhibitor of ferroptosis in cancer cells and glutamate-induced cell death in organotypic rat brain slices, suggesting similarities between these two processes. Indeed, erastin, like glutamate, inhibits cystine uptake by the cystine/glutamate antiporter (system x(c)(-)), creating a void in the antioxidant defenses of the cell and ultimately leading to iron-dependent, oxidative death. Thus, activation of ferroptosis results in the nonapoptotic destruction of certain cancer cells, whereas inhibition of this process may protect organisms from neurodegeneration. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease

            Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of ferroptotic cancer cell death by GPX4.

              Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                yves.wangy@vip.163.com
                meng_qh0805@ccmu.edu.cn
                Journal
                Cell Death Discov
                Cell Death Discov
                Cell Death Discovery
                Nature Publishing Group UK (London )
                2058-7716
                5 October 2021
                5 October 2021
                2021
                : 7
                : 276
                Affiliations
                [1 ]GRID grid.414379.c, Department of Medical Oncology, , Beijing You-An Hospital, Capital Medical University, ; Beijing, 100069 China
                [2 ]GRID grid.419611.a, ISNI 0000 0004 0457 9072, State Key Laboratory of Proteomics, Beijing Proteome Research Center, , National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, ; Beijing, 102206 China
                [3 ]GRID grid.429126.a, ISNI 0000 0004 0644 477X, Brainnetome Center and National Laboratory of Pattern Recognition, , Institute of Automation, Chinese Academy of Sciences, ; Beijing, 100190 China
                [4 ]GRID grid.412474.0, ISNI 0000 0001 0027 0586, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Oncology, , Peking University Cancer Hospital & Institute, ; Beijing, 100036 China
                Author information
                http://orcid.org/0000-0002-4954-6317
                http://orcid.org/0000-0002-1989-4441
                Article
                660
                10.1038/s41420-021-00660-4
                8492622
                34611144
                bae0851c-6602-477e-9c25-f304e84d4b01
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 June 2021
                : 18 August 2021
                : 13 September 2021
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 8170877
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100010270, Capital Health Research and Development of Special;
                Award ID: 2018-1-3011
                Award Recipient :
                Funded by: National Science and Technology Major Project of China (No. 2018ZX10302206-003-007 and 2017ZX10203202-001-005), The Municipal Natural Science Foundation of Beijing, China, (No. 7192085).
                Categories
                Review Article
                Custom metadata
                © The Author(s) 2021

                liver diseases,hepatocellular carcinoma
                liver diseases, hepatocellular carcinoma

                Comments

                Comment on this article