6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chest X-rays (CXRs) are the most commonly performed diagnostic examination to detect cardiopulmonary abnormalities. However, the presence of bony structures such as ribs and clavicles can obscure subtle abnormalities, resulting in diagnostic errors. This study aims to build a deep learning (DL)-based bone suppression model that identifies and removes these occluding bony structures in frontal CXRs to assist in reducing errors in radiological interpretation, including DL workflows, related to detecting manifestations consistent with tuberculosis (TB). Several bone suppression models with various deep architectures are trained and optimized using the proposed combined loss function and their performances are evaluated in a cross-institutional test setting using several metrics such as mean absolute error (MAE), peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and multiscale structural similarity measure (MS–SSIM). The best-performing model (ResNet–BS) (PSNR = 34.0678; MS–SSIM = 0.9828) is used to suppress bones in the publicly available Shenzhen and Montgomery TB CXR collections. A VGG-16 model is pretrained on a large collection of publicly available CXRs. The CXR-pretrained model is then fine-tuned individually on the non-bone-suppressed and bone-suppressed CXRs of Shenzhen and Montgomery TB CXR collections to classify them as showing normal lungs or TB manifestations. The performances of these models are compared using several performance metrics such as accuracy, the area under the curve (AUC), sensitivity, specificity, precision, F-score, and Matthews correlation coefficient (MCC), analyzed for statistical significance, and their predictions are qualitatively interpreted through class-selective relevance maps (CRMs). It is observed that the models trained on bone-suppressed CXRs (Shenzhen: AUC = 0.9535 ± 0.0186; Montgomery: AUC = 0.9635 ± 0.0106) significantly outperformed ( p < 0.05) the models trained on the non-bone-suppressed CXRs (Shenzhen: AUC = 0.8991 ± 0.0268; Montgomery: AUC = 0.8567 ± 0.0870).. Models trained on bone-suppressed CXRs improved detection of TB-consistent findings and resulted in compact clustering of the data points in the feature space signifying that bone suppression improved the model sensitivity toward TB classification.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning

          The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deep Convolutional Neural Network for Inverse Problems in Imaging.

              In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyper parameter selection. The starting point of our work is the observation that unrolled iterative methods have the form of a CNN (filtering followed by point-wise nonlinearity) when the normal operator ( H*H where H* is the adjoint of the forward imaging operator, H ) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill-posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a 512 x 512 image on the GPU.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Diagnostics (Basel)
                Diagnostics (Basel)
                diagnostics
                Diagnostics
                MDPI
                2075-4418
                07 May 2021
                May 2021
                : 11
                : 5
                : 840
                Affiliations
                [1 ]National Library of Medicine, National Institutes of Health, Bethesda, MD 20814, USA; ghadazamzmi.alzamzmi@ 123456nih.gov (G.Z.); sameer.antani@ 123456nih.gov (S.A.)
                [2 ]Clinical Center, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD 20814, USA; les.folio@ 123456nih.gov
                [3 ]School of Medicine, Saint Louis University, St. Louis, MO 63103, USA; philip.alderson@ 123456health.slu.edu
                Author notes
                [* ]Correspondence: sivaramakrishnan.rajaraman@ 123456nih.gov ; Tel.: +1-301-827-2383
                Author information
                https://orcid.org/0000-0003-0871-8634
                https://orcid.org/0000-0003-3617-7433
                https://orcid.org/0000-0002-0040-1387
                Article
                diagnostics-11-00840
                10.3390/diagnostics11050840
                8151767
                34067034
                6e6dad35-5c08-4043-94d2-0bc11d019423
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 21 April 2021
                : 05 May 2021
                Categories
                Article

                deep learning,bone suppression,tuberculosis,convolutional neural networks,classification,statistical analysis,interpretation,chest x-rays

                Comments

                Comment on this article