22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increase of Macrolide-Resistance in Streptococcus pneumoniae Strains After the Introduction of the 13-Valent Pneumococcal Conjugate Vaccine in Lima, Peru

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Streptococcus pneumoniae upper respiratory infections and pneumonia are often treated with macrolides, but recently macrolide resistance is becoming an increasingly important problem. The 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the National Immunization Program of Peru in 2015. This study aimed to evaluate the temporal evolution of macrolide resistance in S. pneumoniae isolates collected in five cross-sectional studies conducted before and after this vaccine introduction, from 2006 to 2019 in Lima, Peru. A total of 521 and 242 S. pneumoniae isolates recovered from nasopharyngeal swabs from healthy carrier children < 2 years old (2 carriage studies) and samples from normally sterile body areas from pediatric patients with invasive pneumococcal disease (IPD) (3 IPD studies), respectively, were included in this study. Phenotypic macrolide resistance was detected using the Kirby-Bauer method and/or MIC test. We found a significant increase in macrolide resistance over time, from 33.5% to 50.0% in carriage studies, and from 24.8% to 37.5% and 70.8% in IPD studies. Macrolide resistance genes [ erm(B) and mef(A/E)] were screened using PCR. In carriage studies, we detected a significant decrease in the frequency of mef(A/E) genes among macrolide-resistant S. pneumoniae strains (from 66.7% to 50.0%) after introduction of PCV13. The most common mechanism of macrolide-resistant among IPD strains was the presence of erm(B) (96.0%, 95.2% and 85.1% in the 3 IPD studies respectively). Macrolide resistance was more common in serotype 19A strains (80% and 90% among carriage and IPD strains, respectively) vs. non-serotype 19A (35.5% and 34.4% among carriage and IPD strains, respectively). In conclusion, S. pneumoniae macrolide resistance rates are very high among Peruvian children. Future studies are needed in order to evaluate macrolide resistance trends among pneumococcal strains, especially now after the COVID-19 pandemic, since azithromycin was vastly used as empiric treatment of COVID-19 in Peru.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15

          Summary Background Pneumococcal conjugate vaccine (PCV) and Haemophilus influenzae type b (Hib) vaccine are now used in most countries. To monitor global and regional progress towards improving child health and to inform national policies for disease prevention and treatment, we prepared global, regional, and national disease burden estimates for these pathogens in children from 2000 to 2015. Methods Using WHO and Maternal and Child Epidemiology Estimation collaboration country-specific estimates of pneumonia and meningitis mortality and pneumonia morbidity from 2000 to 2015, we applied pneumococcal and Hib cause-specific proportions to estimate pathogen-specific deaths and cases. Summary estimates of the proportion of pneumonia deaths and cases attributable to these pathogens were derived from four Hib vaccine and six PCV efficacy and effectiveness study values. The proportion of meningitis deaths due to each pathogen was derived from bacterial meningitis aetiology and adjusted pathogen-specific meningitis case–fatality data. Pneumococcal and Hib meningitis cases were inferred from modelled pathogen-specific meningitis deaths and literature-derived case–fatality estimates. Cases of pneumococcal and Hib syndromes other than pneumonia and meningitis were estimated using the ratio of pathogen-specific non-pneumonia, non-meningitis cases to pathogen-specific meningitis cases from the literature. We accounted for annual HIV infection prevalence, access to care, and vaccine use. Findings We estimated that there were 294 000 pneumococcal deaths (uncertainty range [UR] 192 000–366 000) and 29 500 Hib deaths (18 400–40 700) in HIV-uninfected children aged 1–59 months in 2015. An additional 23 300 deaths (15 300–28 700) associated with pneumococcus and fewer than 1000 deaths associated Hib were estimated to have occurred in children infected with HIV. We estimate that pneumococcal deaths declined by 51% (7–74) and Hib deaths by 90% (78–96) from 2000 to 2015. Most children who died of pneumococcus (81%) and Hib (76%) presented with pneumonia. Less conservative assumptions result in pneumococcccal death estimates that could be as high as 515 000 deaths (302 000–609 000) in 2015. Approximately 50% of all pneumococcal deaths in 2015 occurred in four countries in Africa and Asia: India (68 700 deaths, UR 44 600–86 100), Nigeria (49 000 deaths, 32 400–59 000), the Democratic Republic of the Congo (14 500 deaths, 9300–18 700), and Pakistan (14 400 deaths, 9700–17 000]). India (15 600 deaths, 9800–21 500), Nigeria (3600 deaths, 2200–5100), China (3400 deaths, 2300–4600), and South Sudan (1000 deaths, 600–1400) had the greatest number of Hib deaths in 2015. We estimated 3·7 million episodes (UR 2·7 million–4·3 million) of severe pneumococcus and 340 000 episodes (196 000–669 000) of severe Hib globally in children in 2015. Interpretation The widespread use of Hib vaccine and the recent introduction of PCV in countries with high child mortality is associated with reductions in Hib and pneumococcal cases and deaths. Uncertainties in the burden of pneumococcal disease are largely driven by the fraction of pneumonia deaths attributable to pneumococcus. Progress towards further reducing the global burden of Hib and pneumococcal disease burden will depend on the efforts of a few large countries in Africa and Asia. Funding Bill & Melinda Gates Foundation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study.

            Not all patients infected with NDM-1-positive bacteria have a history of hospital admission in India, and extended-spectrum β-lactamases are known to be circulating in the Indian community. We therefore measured the prevalence of the NDM-1 gene in drinking water and seepage samples in New Delhi. Swabs absorbing about 100 μL of seepage water (ie, water pools in streets or rivulets) and 15 mL samples of public tap water were collected from sites within a 12 km radius of central New Delhi, with each site photographed and documented. Samples were transported to the UK and tested for the presence of the NDM-1 gene, bla(NDM-1), by PCR and DNA probing. As a control group, 100 μL sewage effluent samples were taken from the Cardiff Wastewater Treatment Works, Tremorfa, Wales. Bacteria from all samples were recovered and examined for bla(NDM-1) by PCR and sequencing. We identified NDM-1-positive isolates, undertook susceptibility testing, and, where appropriate, typed the isolates. We undertook Inc typing on bla(NDM-1)-positive plasmids. Transconjugants were created to assess plasmid transfer frequency and its relation to temperature. From Sept 26 to Oct 10, 2010, 171 seepage samples and 50 tap water samples from New Delhi and 70 sewage effluent samples from Cardiff Wastewater Treatment Works were collected. We detected bla(NDM-1) in two of 50 drinking-water samples and 51 of 171 seepage samples from New Delhi; the gene was not found in any sample from Cardiff. Bacteria with bla(NDM-1) were grown from 12 of 171 seepage samples and two of 50 water samples, and included 11 species in which NDM-1 has not previously been reported, including Shigella boydii and Vibrio cholerae. Carriage by enterobacteria, aeromonads, and V cholera was stable, generally transmissible, and associated with resistance patterns typical for NDM-1; carriage by non-fermenters was unstable in many cases and not associated with typical resistance. 20 strains of bacteria were found in the samples, 12 of which carried bla(NDM-1) on plasmids, which ranged in size from 140 to 400 kb. Isolates of Aeromonas caviae and V cholerae carried bla(NDM-1) on chromosomes. Conjugative transfer was more common at 30°C than at 25°C or 37°C. The presence of NDM-1 β-lactamase-producing bacteria in environmental samples in New Delhi has important implications for people living in the city who are reliant on public water and sanitation facilities. International surveillance of resistance, incorporating environmental sampling as well as examination of clinical isolates, needs to be established as a priority. European Union. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates.

              Streptococcus pneumoniae is a leading cause of bacterial pneumonia, meningitis, and sepsis in children worldwide. However, many countries lack national estimates of disease burden. Effective interventions are available, including pneumococcal conjugate vaccine and case management. To support local and global policy decisions on pneumococcal disease prevention and treatment, we estimated country-specific incidence of serious cases and deaths in children younger than 5 years. We measured the burden of pneumococcal pneumonia by applying the proportion of pneumonia cases caused by S pneumoniae derived from efficacy estimates from vaccine trials to WHO country-specific estimates of all-cause pneumonia cases and deaths. We also estimated burden of meningitis and non-pneumonia, non-meningitis invasive disease using disease incidence and case-fatality data from a systematic literature review. When high-quality data were available from a country, these were used for national estimates. Otherwise, estimates were based on data from neighbouring countries with similar child mortality. Estimates were adjusted for HIV prevalence and access to care and, when applicable, use of vaccine against Haemophilus influenzae type b. In 2000, about 14.5 million episodes of serious pneumococcal disease (uncertainty range 11.1-18.0 million) were estimated to occur. Pneumococcal disease caused about 826,000 deaths (582,000-926,000) in children aged 1-59 months, of which 91,000 (63,000-102,000) were in HIV-positive and 735,000 (519,000-825,000) in HIV-negative children. Of the deaths in HIV-negative children, over 61% (449,000 [316,000-501,000]) occurred in ten African and Asian countries. S pneumoniae causes around 11% (8-12%) of all deaths in children aged 1-59 months (excluding pneumococcal deaths in HIV-positive children). Achievement of the UN Millennium Development Goal 4 for child mortality reduction can be accelerated by prevention and treatment of pneumococcal disease, especially in regions of the world with the greatest burden. GAVI Alliance and the Vaccine Fund.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Infect Microbiol
                Front Cell Infect Microbiol
                Front. Cell. Infect. Microbiol.
                Frontiers in Cellular and Infection Microbiology
                Frontiers Media S.A.
                2235-2988
                09 May 2022
                2022
                : 12
                : 866186
                Affiliations
                [1] 1Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia , Lima, Peru
                [2] 2Departamento de Pediatría, Hospital Nacional Docente Madre-Niño San Bartolomé , Lima, Peru
                [3] 3Departamento de Pediatría, Hospital Nacional Cayetano Heredia , Lima, Peru
                [4] 4Facultad de Medicina, Universidad Peruana Cayetano Heredia , Lima, Peru
                [5] 5Servicio de Pediatría de Especialidades Clínicas, Hospital Nacional Edgardo Rebagliati Martins , Lima, Peru
                [6] 6Oficina de Epidemiología, Instituto Nacional de Salud del Niño , Lima, Peru
                [7] 7Departamento de Pediatría, Hospital Nacional Daniel Alcides Carrión , Lima, Peru
                [8] 8Servicio de Hospitalización, Hospital de Emergencias Pediátricas , Lima, Peru
                Author notes

                Edited by: Elsa Bou Ghanem, University at Buffalo, United States

                Reviewed by: Anusak Kerdsin, Kasetsart University, Thailand; Manmeet Bhalla, University at Buffalo, United States; Jose Yuste, Instituto de Salud Carlos III (ISCIII), Spain

                *Correspondence: Theresa J. Ochoa, theresa.ochoa@ 123456upch.pe

                This article was submitted to Molecular Bacterial Pathogenesis, a section of the journal Frontiers in Cellular and Infection Microbiology

                Article
                10.3389/fcimb.2022.866186
                9125093
                35615398
                61a4e137-1898-4e26-bcb0-ad1715812990
                Copyright © 2022 Gonzales, Mercado, Pinedo-Bardales, Hinostroza, Campos, Chaparro, Del Águila, Castillo, Saenz, Reyes and Ochoa

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 January 2022
                : 04 April 2022
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 55, Pages: 10, Words: 5243
                Categories
                Cellular and Infection Microbiology
                Original Research

                Infectious disease & Microbiology
                streptococcus pneumoniae,macrolide-resistance,invasive pneumococcal disease,pneumococcal conjugate vaccine,healthy carrier

                Comments

                Comment on this article