82
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phytochemicals as antibiotic alternatives to promote growth and enhance host health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There are heightened concerns globally on emerging drug-resistant superbugs and the lack of new antibiotics for treating human and animal diseases. For the agricultural industry, there is an urgent need to develop strategies to replace antibiotics for food-producing animals, especially poultry and livestock. The 2 nd International Symposium on Alternatives to Antibiotics was held at the World Organization for Animal Health in Paris, France, December 12–15, 2016 to discuss recent scientific developments on strategic antibiotic-free management plans, to evaluate regional differences in policies regarding the reduction of antibiotics in animal agriculture and to develop antibiotic alternatives to combat the global increase in antibiotic resistance. More than 270 participants from academia, government research institutions, regulatory agencies, and private animal industries from >25 different countries came together to discuss recent research and promising novel technologies that could provide alternatives to antibiotics for use in animal health and production; assess challenges associated with their commercialization; and devise actionable strategies to facilitate the development of alternatives to antibiotic growth promoters (AGPs) without hampering animal production. The 3-day meeting consisted of four scientific sessions including vaccines, microbial products, phytochemicals, immune-related products, and innovative drugs, chemicals and enzymes, followed by the last session on regulation and funding. Each session was followed by an expert panel discussion that included industry representatives and session speakers. The session on phytochemicals included talks describing recent research achievements, with examples of successful agricultural use of various phytochemicals as antibiotic alternatives and their mode of action in major agricultural animals (poultry, swine and ruminants). Scientists from industry and academia and government research institutes shared their experience in developing and applying potential antibiotic-alternative phytochemicals commercially to reduce AGPs and to develop a sustainable animal production system in the absence of antibiotics.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Energy contributions of volatile fatty acids from the gastrointestinal tract in various species.

          E BERGMAN (1990)
          The VFA, also known as short-chain fatty acids, are produced in the gastrointestinal tract by microbial fermentation of carbohydrates and endogenous substrates, such as mucus. This can be of great advantage to the animal, since no digestive enzymes exist for breaking down cellulose or other complex carbohydrates. The VFA are produced in the largest amounts in herbivorous animal species and especially in the forestomach of ruminants. The VFA, however, also are produced in the lower digestive tract of humans and all animal species, and intestinal fermentation resembles that occurring in the rumen. The principal VFA in either the rumen or large intestine are acetate, propionate, and butyrate and are produced in a ratio varying from approximately 75:15:10 to 40:40:20. Absorption of VFA at their site of production is rapid, and large quantities are metabolized by the ruminal or large intestinal epithelium before reaching the portal blood. Most of the butyrate is converted to ketone bodies or CO2 by the epithelial cells, and nearly all of the remainder is removed by the liver. Propionate is similarly removed by the liver but is largely converted to glucose. Although species differences exist, acetate is used principally by peripheral tissues, especially fat and muscle. Considerable energy is obtained from VFA in herbivorous species, and far more research has been conducted on ruminants than on other species. Significant VFA, however, are now known to be produced in omnivorous species, such as pigs and humans. Current estimates are that VFA contribute approximately 70% to the caloric requirements of ruminants, such as sheep and cattle, approximately 10% for humans, and approximately 20-30% for several other omnivorous or herbivorous animals. The amount of fiber in the diet undoubtedly affects the amount of VFA produced, and thus the contribution of VFA to the energy needs of the body could become considerably greater as the dietary fiber increases. Pigs and some species of monkey most closely resemble humans, and current research should be directed toward examining the fermentation processes and VFA metabolism in those species. In addition to the energetic or nutritional contributions of VFA to the body, the VFA may indirectly influence cholesterol synthesis and even help regulate insulin or glucagon secretion. In addition, VFA production and absorption have a very significant effect on epithelial cell growth, blood flow, and the normal secretory and absorptive functions of the large intestine, cecum, and rumen. The absorption of VFA and sodium, for example, seem to be interdependent, and release of bicarbonate usually occurs during VFA absorption.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy.

            The essential oil of Melaleuca alternifolia (tea tree) has broad-spectrum antimicrobial activity. The mechanisms of action of tea tree oil and three of its components, 1,8-cineole, terpinen-4-ol, and alpha-terpineol, against Staphylococcus aureus ATCC 9144 were investigated. Treatment with these agents at their MICs and two times their MICs, particularly treatment with terpinen-4-ol and alpha-terpineol, reduced the viability of S. aureus. None of the agents caused lysis, as determined by measurement of the optical density at 620 nm, although cells became disproportionately sensitive to subsequent autolysis. Loss of 260-nm-absorbing material occurred after treatment with concentrations equivalent to the MIC, particularly after treatment with 1,8-cineole and alpha-terpineol. S. aureus organisms treated with tea tree oil or its components at the MIC or two times the MIC showed a significant loss of tolerance to NaCl. When the agents were tested at one-half the MIC, only 1,8-cineole significantly reduced the tolerance of S. aureus to NaCl. Electron microscopy of terpinen-4-ol-treated cells showed the formation of mesosomes and the loss of cytoplasmic contents. The predisposition to lysis, the loss of 260-nm-absorbing material, the loss of tolerance to NaCl, and the altered morphology seen by electron microscopy all suggest that tea tree oil and its components compromise the cytoplasmic membrane.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review

                Bookmark

                Author and article information

                Contributors
                Hyun.Lillehoj@ars.usda.gov
                yahliu@ucdavis.edu
                Sergio.Calsamiglia@uab.cat
                fernandezmiyakawa.m@inta.gob.ar
                fang.chi@amlan.com
                ron.cravens@amlan.com
                Sungtaek.Oh@ars.usda.gov
                Cyril.Gay@ars.usda.gov
                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central (London )
                0928-4249
                1297-9716
                31 July 2018
                31 July 2018
                2018
                : 49
                : 76
                Affiliations
                [1 ]ISNI 0000 0004 0478 6311, GRID grid.417548.b, Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, , US Department of Agriculture, ; Beltsville, MD 20705 USA
                [2 ]ISNI 0000 0004 1936 9684, GRID grid.27860.3b, University of California, ; Davis, CA 95616 USA
                [3 ]GRID grid.7080.f, Animal Nutrition and Welfare Service, , Universitat Autònoma de Barcelona, ; 08193 Bellaterra, Spain
                [4 ]ISNI 0000 0001 2167 7174, GRID grid.419231.c, Instituto de Patobiología, Centro Nacional de Investigaciones Agropecuarias, , Instituto Nacional de Tecnología Agropecuaria, ; Calle Las Cabañas y Los Reseros s/n, Casilla de Correo 25, Castelar, 1712 Buenos Aires, Argentina
                [5 ]Amlan International, Chicago, IL 60611 USA
                [6 ]ISNI 0000 0004 0478 6311, GRID grid.417548.b, National Program Staff-Animal Health, Agricultural Research Service, , US Department of Agriculture, ; Beltsville, MD 20705 USA
                Article
                562
                10.1186/s13567-018-0562-6
                6066919
                30060764
                61205060-6e80-4a91-9b7a-46ef6c062d33
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 October 2017
                : 2 January 2018
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article