30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal development and health is critically important for enhancing nutrient digestibility capacity and disease resistance of weaned pigs, therefore, increasing their survival rate at this most vulnerable stage, and overall productive performance during later stages. A healthy gut may include but not limited several important features: a healthy proliferation of intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence suggested nutritional intervention are one of promising measures to enhance intestinal health of weaned pigs, although the exact protective mechanisms may vary and are still not completely understood. Previous research indicated that functional amino acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression of tight junction protein) of weaned pigs. A number of feed additives are marketed to assist in boosting intestinal immunity and regulating gut microbiota, therefore, reducing the negative impacts of weaning, and other environmental challenges on piglets. The promising results have been demonstrated in antimicrobial peptides, clays, direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids, phytochemicals, and many other feed additives. This review summarizes our current understanding of nutritional intervention on intestinal health and development of weaned pigs and the importance of mechanistic studies focusing on this research area.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration.

          Small populations of adult stem cells are responsible for the remarkable ability of the epithelial lining of the intestine to be efficiently renewed and repaired throughout life. The recent discovery of specific markers for these stem cells, together with the development of new technologies to track endogenous stem cell activity in vivo and to exploit their ability to generate new epithelia ex vivo, has greatly improved our understanding of stem cell-driven homeostasis, regeneration and cancer in the intestine. These exciting new insights into the biology of intestinal stem cells have the potential to accelerate the development of stem cell-based therapies and ameliorate cancer treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Host-derived nitrate boosts growth of E. coli in the inflamed gut.

            Changes in the microbial community structure are observed in individuals with intestinal inflammatory disorders. These changes are often characterized by a depletion of obligate anaerobic bacteria, whereas the relative abundance of facultative anaerobic Enterobacteriaceae increases. The mechanisms by which the host response shapes the microbial community structure, however, remain unknown. We show that nitrate generated as a by-product of the inflammatory response conferred a growth advantage to the commensal bacterium Escherichia coli in the large intestine of mice. Mice deficient in inducible nitric oxide synthase did not support the growth of E. coli by nitrate respiration, suggesting that the nitrate generated during inflammation was host-derived. Thus, the inflammatory host response selectively enhances the growth of commensal Enterobacteriaceae by generating electron acceptors for anaerobic respiration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arginine metabolism and nutrition in growth, health and disease.

              L-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or L-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                21 February 2019
                2019
                : 6
                : 46
                Affiliations
                [1] 1Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha, China
                [2] 2Department of Animal Science and Biotechnology, Chungnam National University , Daejeon, South Korea
                [3] 3Department of Nutrition, University of California, Davis , Davis, CA, United States
                [4] 4Department of Animal Science, University of California, Davis , Davis, CA, United States
                Author notes

                Edited by: Toshiro Arai, Nippon Veterinary and Life Science University, Japan

                Reviewed by: Kyung-Woo Lee, Konkuk University, South Korea; Alessandra Pelagalli, University of Naples Federico II, Italy

                *Correspondence: Yanhong Liu yahliu@ 123456ucdavis.edu

                This article was submitted to Animal Nutrition and Metabolism, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2019.00046
                6393345
                30847348
                9cbbca83-de78-4dc1-90d2-7a90d7f3aaa6
                Copyright © 2019 Xiong, Tan, Song, Ji, Kim, Yin and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 25 September 2018
                : 04 February 2019
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 180, Pages: 14, Words: 11323
                Categories
                Veterinary Science
                Review

                amino acids,feed additives,intestinal development,intestinal health,weaned piglets

                Comments

                Comment on this article