64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mycobacterium tuberculosis nuoG Is a Virulence Gene That Inhibits Apoptosis of Infected Host Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The survival and persistence of Mycobacterium tuberculosis depends on its capacity to manipulate multiple host defense pathways, including the ability to actively inhibit the death by apoptosis of infected host cells. The genetic basis for this anti-apoptotic activity and its implication for mycobacterial virulence have not been demonstrated or elucidated. Using a novel gain-of-function genetic screen, we demonstrated that inhibition of infection-induced apoptosis of macrophages is controlled by multiple genetic loci in M. tuberculosis. Characterization of one of these loci in detail revealed that the anti-apoptosis activity was attributable to the type I NADH-dehydrogenase of M. tuberculosis, and was mainly due to the subunit of this multicomponent complex encoded by the nuoG gene. Expression of M. tuberculosis nuoG in nonpathogenic mycobacteria endowed them with the ability to inhibit apoptosis of infected human or mouse macrophages, and increased their virulence in a SCID mouse model. Conversely, deletion of nuoG in M. tuberculosis ablated its ability to inhibit macrophage apoptosis and significantly reduced its virulence in mice. These results identify a key component of the genetic basis for an important virulence trait of M. tuberculosis and support a direct causal relationship between virulence of pathogenic mycobacteria and their ability to inhibit macrophage apoptosis.

          Author Summary

          The infection-induced suicide of host cells following invasion by intracellular pathogens is an ancient defense mechanism observed in multicellular organisms of both the animal and plant kingdoms. It is therefore not surprising that persistent pathogens of viral, bacterial, and protozoal origin have evolved to inhibit the induction of host cell death. M. tuberculosis, the etiological agent of tuberculosis, has latently infected about one third of the world's population and can persist for decades in the lungs of infected, asymptomatic individuals. In the present study we have identified nuoG of M. tuberculosis, which encodes a subunit of the type I NADH dehydrogenase complex, as a critical bacterial gene for inhibition of host cell death. A mutant of M. tuberculosis in which nuoG was deleted triggered a marked increase in apoptosis by infected macrophages, and subsequent analysis of this mutant in the mouse tuberculosis model provided direct evidence for a causal link between the capacity to inhibit apoptosis and bacterial virulence. The discovery of anti-apoptosis genes in M. tuberculosis could provide a powerful approach to the generation of better attenuated vaccine strains, and may also identify a new group of drug targets for improved chemotherapy.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Genes required for mycobacterial growth defined by high density mutagenesis.

          Despite over a century of research, tuberculosis remains a leading cause of infectious death worldwide. Faced with increasing rates of drug resistance, the identification of genes that are required for the growth of this organism should provide new targets for the design of antimycobacterial agents. Here, we describe the use of transposon site hybridization (TraSH) to comprehensively identify the genes required by the causative agent, Mycobacterium tuberculosis, for optimal growth. These genes include those that can be assigned to essential pathways as well as many of unknown function. The genes important for the growth of M. tuberculosis are largely conserved in the degenerate genome of the leprosy bacillus, Mycobacterium leprae, indicating that non-essential functions have been selectively lost since this bacterium diverged from other mycobacteria. In contrast, a surprisingly high proportion of these genes lack identifiable orthologues in other bacteria, suggesting that the minimal gene set required for survival varies greatly between organisms with different evolutionary histories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New use of BCG for recombinant vaccines.

            BCG, a live attenuated tubercle bacillus, is the most widely used vaccine in the world and is also a useful vaccine vehicle for delivering protective antigens of multiple pathogens. Extrachromosomal and integrative expression vectors carrying the regulatory sequences for major BCG heat-shock proteins have been developed to allow expression of foreign antigens in BCG. These recombinant BCG strains can elicit long-lasting humoral and cellular immune responses to foreign antigens in mice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase.

              Mycobacterium tuberculosis claims more human lives each year than any other bacterial pathogen. Infection is maintained in spite of acquired immunity and resists eradication by antimicrobials. Despite an urgent need for new therapies targeting persistent bacteria, our knowledge of bacterial metabolism throughout the course of infection remains rudimentary. Here we report that persistence of M. tuberculosis in mice is facilitated by isocitrate lyase (ICL), an enzyme essential for the metabolism of fatty acids. Disruption of the icl gene attenuated bacterial persistence and virulence in immune-competent mice without affecting bacterial growth during the acute phase of infection. A link between the requirement for ICL and the immune status of the host was established by the restored virulence of delta icl bacteria in interferon-gamma knockout mice. This link was apparent at the level of the infected macrophage: Activation of infected macrophages increased expression of ICL, and the delta icl mutant was markedly attenuated for survival in activated but not resting macrophages. These data suggest that the metabolism of M. tuberculosis in vivo is profoundly influenced by the host response to infection, an observation with important implications for the treatment of chronic tuberculosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                ppat
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                July 2007
                20 July 2007
                : 3
                : 7
                : e110
                Affiliations
                [1 ] Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
                [2 ] Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
                [3 ] Division of Infectious Diseases, Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
                [4 ] Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
                [5 ] Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
                Johns Hopkins School of Medicine, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: vbriken@ 123456umd.edu
                Article
                07-PLPA-RA-0217R2 plpa-03-07-09
                10.1371/journal.ppat.0030110
                1924871
                17658950
                5d4670e7-0403-4054-972e-536a3e5b5848
                Copyright: © 2007 Velmurugan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 April 2007
                : 13 June 2007
                Page count
                Pages: 9
                Categories
                Research Article
                Immunology
                Infectious Diseases
                Microbiology
                Microbiology
                Microbiology
                Eubacteria
                Mus (Mouse)
                In Vitro
                None
                Custom metadata
                Velmurugan K, Chen B, Miller JL, Azogue S, Gurses S, et al. (2007) Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells. PLoS Pathog 3(7): e110. doi: 10.1371/journal.ppat.0030110

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article