49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fast Hearing-Threshold Estimation Using Multiple Auditory Steady-State Responses with Narrow-Band Chirps and Adaptive Stimulus Patterns

      research-article
      * , ,
      The Scientific World Journal
      The Scientific World Journal

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes the estimation of hearing thresholds in normal-hearing and hearing-impaired subjects on the basis of multiple-frequency auditory steady-state responses (ASSRs). The ASSR was measured using two new techniques: (i) adaptive stimulus patterns and (ii) narrow-band chirp stimuli. ASSR thresholds in 16 normal-hearing and 16 hearing-impaired adults were obtained simultaneously at both ears at 500, 1000, 2000, and 4000 Hz, using a multiple-frequency stimulus built up of four one-octave-wide narrow-band chirps with a repetition rate of 40 Hz. A statistical test in the frequency domain was used to detect the response. The recording of the steady-state responses was controlled in eight independent recording channels with an adaptive, semiautomatic algorithm. The average differences between the behavioural hearing thresholds and the ASSR threshold estimate were 10, 8, 13, and 15 dB for test frequencies of 500, 1000, 2000, and 4000 Hz, respectively. The average overall test duration of 18.6 minutes for the threshold estimations at the four frequencies and both ears demonstrates the benefit of an adaptive recording algorithm and the efficiency of optimised narrow-band chirp stimuli.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Human auditory steady-state responses.

          Steady-state evoked potentials can be recorded from the human scalp in response to auditory stimuli presented at rates between 1 and 200 Hz or by periodic modulations of the amplitude and/or frequency of a continuous tone. Responses can be objectively detected using frequency-based analyses. In waking subjects, the responses are particularly prominent at rates near 40 Hz. Responses evoked by more rapidly presented stimuli are less affected by changes in arousal and can be evoked by multiple simultaneous stimuli without significant loss of amplitude. Response amplitude increases as the depth of modulation or the intensity increases. The phase delay of the response increases as the intensity or the carrier frequency decreases. Auditory steady-state responses are generated throughout the auditory nervous system, with cortical regions contributing more than brainstem generators to responses at lower modulation frequencies. These responses are useful for objectively evaluating auditory thresholds, assessing suprathreshold hearing, and monitoring the state of arousal during anesthesia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion.

            This study examines auditory brainstem responses (ABR) elicited by rising frequency chirps. The time course of frequency change for the chirp theoretically produces simultaneous displacement maxima by compensating for travel-time differences along the cochlear partition. This broadband chirp was derived on the basis of a linear cochlea model [de Boer, "Auditory physics. Physical principles in hearing theory I," Phys. Rep. 62, 87-174 (1980)]. Responses elicited by the broadband chirp show a larger wave-V amplitude than do click-evoked responses for most stimulation levels tested. This result is in contrast to the general hypothesis that the ABR is an electrophysiological event most effectively evoked by the onset or offset of an acoustic stimulus, and unaffected by further stimulation. The use of this rising frequency chirp enables the inclusion of activity from lower frequency regions, whereas with a click, synchrony is decreased in accordance with decreasing traveling velocity in the apical region. The use of a temporally reversed (falling) chirp leads to a further decrease in synchrony as reflected in ABR responses that are smaller than those from a click. These results are compatible with earlier experimental results from recordings of compound action potentials (CAP) [Shore and Nuttall, "High synchrony compound action potentials evoked by rising frequency-swept tonebursts," J. Acoust. Soc. Am. 78, 1286-1295 (1985)] reflecting activity at the level of the auditory nerve. Since the ABR components considered here presumably reflect neural response from the brainstem, the effect of an optimized synchronization at the peripheral level can also be observed at the brainstem level. The rising chirp may therefore be of clinical use in assessing the integrity of the entire peripheral organ and not just its basal end.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Auditory steady-state responses to chirp stimuli based on cochlear traveling wave delay.

              This study investigates the use of chirp stimuli to compensate for the cochlear traveling wave delay. The temporal dispersion in the cochlea is given by the traveling time, which in this study is estimated from latency-frequency functions obtained from (1) a cochlear model, (2) tone-burst auditory brain stem response (ABR) latencies, (3) and narrow-band ABR latencies. These latency-frequency functions are assumed to reflect the group delay of a linear system that modifies the phase spectrum of the applied stimulus. On the basis of this assumption, three chirps are constructed and evaluated in 49 normal-hearing subjects. The auditory steady-state responses to these chirps and to a click stimulus are compared at two levels of stimulation (30 and 50 dB nHL) and a rate of 90s. The chirps give shorter detection time and higher signal-to-noise ratio than the click. The shorter detection time obtained by the chirps is equivalent to an increase in stimulus level of 20 dB or more. The results indicate that a chirp is a more efficient stimulus than a click for the recording of early auditory evoked responses in normal-hearing adults using transient sounds at a high rate of stimulation.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                The Scientific World Journal
                1537-744X
                2012
                24 April 2012
                : 2012
                : 192178
                Affiliations
                Department of Experimental Audiology, Otto-von-Guericke University Magdeburg, Leipziger Street 44, 39120 Magdeburg, Germany
                Author notes

                Academic Editors: T. J. Balkany, Y. Noguchi, W. Sulkowski, and I. Todt

                Article
                10.1100/2012/192178
                3349325
                22619622
                0db15647-24ed-4edc-b7cb-87b478bea40b
                Copyright © 2012 Roland Mühler et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 October 2011
                : 22 December 2011
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article