10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scanning electrochemical microscopy and its potential for studying biofilms and antimicrobial coatings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biofilms are known to be well-organized microbial communities embedded in an extracellular polymeric matrix, which supplies bacterial protection against external stressors. Biofilms are widespread and diverse, and despite the considerable large number of publications and efforts reported regarding composition, structure and cell-to-cell communication within biofilms in the last decades, the mechanisms of biofilm formation, the interaction and communication between bacteria are still not fully understood. This knowledge is required to understand why biofilms form and how we can combat them or how we can take advantage of these sessile communities, e.g. in biofuel cells. Therefore, in situ and real-time monitoring of nutrients, metabolites and quorum sensing molecules is of high importance, which may help to fill that knowledge gap. This review focuses on the potential of scanning electrochemical microscopy (SECM) as a versatile method for in situ studies providing temporal and lateral resolution in order to elucidate cell-to-cell communication, microbial metabolism and antimicrobial impact, e.g. of antimicrobial coatings through the study of electrochemical active molecules. Given the complexity and diversity of biofilms, challenges and limitations will be also discussed.

          Related collections

          Most cited references118

          • Record: found
          • Abstract: found
          • Article: not found

          Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity.

          Silver nanoparticles are well known potent antimicrobial agents. Although significant progresses have been achieved on the elucidation of antimicrobial mechanism of silver nanoparticles, the exact mechanism of action is still not completely known. This overview incorporates a retrospective of previous reviews published and recent original contributions on the progress of research on antimicrobial mechanisms of silver nanoparticles. The main topics discussed include release of silver nanoparticles and silver ions, cell membrane damage, DNA interaction, free radical generation, bacterial resistance and the relationship of resistance to silver ions versus resistance to silver nanoparticles. The focus of the overview is to summarize the current knowledge in the field of antibacterial activity of silver nanoparticles. The possibility that pathogenic microbes may develop resistance to silver nanoparticles is also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili.

            We have used Escherichia coli as a model system to investigate the initiation of biofilm formation. Here, we demonstrate that E. coli forms biofilms on multiple abiotic surfaces in a nutrient-dependent fashion. In addition, we have isolated insertion mutations that render this organism defective in biofilm formation. One-half of these mutations was found to perturb normal flagellar function. Using defined fli, flh, mot and che alleles, we show that motility, but not chemotaxis, is critical for normal biofilm formation. Microscopic analyses of these mutants suggest that motility is important for both initial interaction with the surface and for movement along the surface. In addition, we present evidence that type I pili (harbouring the mannose-specific adhesin, FimH) are required for initial surface attachment and that mannose inhibits normal attachment. In light of the observations presented here, a working model is discussed that describes the roles of both motility and type I pili in biofilm development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilm formation by plant-associated bacteria.

              Plants support a diverse array of bacteria, including parasites, mutualists, and commensals on and around their roots, in the vasculature, and on aerial tissues. These microbes have a profound influence on plant health and productivity. Bacteria physically interact with surfaces to form complex multicellular and often multispecies assemblies, including biofilms and smaller aggregates. There is growing appreciation that the intensity, duration, and outcome of plant-microbe interactions are significantly influenced by the conformation of adherent microbial populations. Biofilms on different tissues have unique properties, reflecting the prevailing conditions at those sites. Attachment is required for biofilm formation, and bacteria interact with plant tissues through adhesins including polysaccharides and surface proteins, with initial contact often mediated by active motility. Recognition between lectins and their cognate carbohydrates is a common means of specificity. Biofilm development and the resulting intimate interactions with plants often require cell-cell communication between colonizing bacteria.
                Bookmark

                Author and article information

                Contributors
                christine.kranz@uni-ulm.de
                Journal
                Anal Bioanal Chem
                Anal Bioanal Chem
                Analytical and Bioanalytical Chemistry
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1618-2642
                1618-2650
                21 July 2020
                21 July 2020
                2020
                : 412
                : 24
                : 6133-6148
                Affiliations
                GRID grid.6582.9, ISNI 0000 0004 1936 9748, Institute of Analytical and Bioanalytical Chemistry, , Ulm University, ; Albert-Einstein-Allee, 11, 89081 Ulm, Germany
                Article
                2782
                10.1007/s00216-020-02782-7
                7442582
                32691088
                033b859e-906d-4132-b124-eaaa3f6675e2
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 May 2020
                : 8 June 2020
                : 19 June 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000780, European Commission;
                Award ID: Marie Skłodowska Curie Grant Agreement No. 813439
                Categories
                Review
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2020

                Analytical chemistry
                scanning electrochemical microscopy,biofilm,bacteria,quorum sensing,antimicrobial

                Comments

                Comment on this article