2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cadmium Pollution in the Tourism Environment: A Literature Review

      , , ,
      Geosciences
      MDPI AG

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cadmium is a highly-toxic metal, and, its environmental occurrence and human exposure consequently deserve close attention. The insight into the relationships between cadmium and tourism relations has deepened during the past three decades and the research into this relationship is reviewed. For this purpose, 83 relevant publications (mainly articles in international journals) were analyzed. It was found that investigation of Cd in the tourism environment took place in all continents (except Antarctica) and has intensified since the mid-2000s; Chinese researchers are the most active contributors. The Cd occurrence in air, living organisms, sediments, soil, suspended particular matter, water, and of the human environment has been studied. It has become clear that tourism contributes to Cd pollution (particularly, by hotel wastewater and increased traffic), and, vice versa, Cd pollution of beaches, coastal waters, food, urban parks, etc. creates risks for tourists and increases human exposure to this toxic metal. Both mechanisms have received equal attention. Examples concern many places worldwide, with the Mediterranean and Central and Eastern Europe as apparently critical regions. Our significantly incomplete knowledge of the relationships between cadmium and tourism must be ascribed to the common oversimplification of these relationships and to the scarcity or even absence of information supplied by the most important tourist destinations. The present review demonstrates that more studies of heavy metals and, particularly, Cd in the tourism environment are needed.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Literature review as a research methodology: An overview and guidelines

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cadmium in soils and groundwater: A review

              Cadmium (Cd) is a non-essential trace element that is widely distributed in the environment. Both geogenic and anthropogenic sources can elevate Cd concentrations in soils and groundwater, which are important for maintaining healthy supplies of food and safe drinking water. Elevated Cd doses are carcinogenic to humans. The WHO Guidelines for Drinking-Water Quality recommend a guideline value for Cd of 3 μg/L. Important anthropogenic Cd sources include mining, atmospheric deposition of combustion emissions, and the use of Cd-containing fertilizers. We document several cases of Cd pollution in soil and groundwater based on worldwide accounts. Besides anthropogenic Cd sources, Cd is also incorporated into sulfides, carbonates, and phosphorites resulting in elevated Cd concentrations in associated rock types. The crustal median Cd content is 0.2 mg/kg. In soils, Cd occurs at concentrations of 0.01 to 1 mg/kg with a worldwide mean of 0.36 mg/kg. Weathering can lead to Cd concentrations up to 5 μg/L in soil water and up to 1 μg/L in groundwater. In aqueous solutions, Cd generally occurs as the divalent Cd 2+ and it is mobilized mainly in oxic, acidic conditions. Cadmium sorption is enhanced by the presence of high amounts of hydrous oxides, clay minerals, and organic matter, and its mobility is further influenced by pH, the redox state, and ionic strength of the solution. However, Cd can remain in solution as water-soluble complexes with anions, such as CdCl + and Cd(SO 4 ) 2 2− , and dissolved organic matter while sorption and precipitation decrease the aqueous concentration of most other heavy metals. As a consequence, Cd is one of the most mobile heavy metals in the environment. The elevated mobilization potential, e.g., through competition and ligand induced desorption, is the reason for faster Cd release from soil into groundwater than other heavy metals. The goal of this study was to present a broad overview of the origin and concentration of Cd in groundwater, and its reaction pathways in aquatic environments. To gain an overview of the hydrochemical behavior of Cd, cases of Cd pollution in soil and groundwater, studies investigating Cd release, and information about the legal framework were compiled.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                GBSEDA
                Geosciences
                Geosciences
                MDPI AG
                2076-3263
                June 2020
                June 22 2020
                : 10
                : 6
                : 242
                Article
                10.3390/geosciences10060242
                c7247e88-2c25-42f6-acc9-9fc6a48f3da1
                © 2020

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article