4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Strigolactone GR24 improves cadmium tolerance by regulating cadmium uptake, nitric oxide signaling and antioxidant metabolism in barley (Hordeum vulgare L.)

      , , , ,
      Environmental Pollution
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species.

          Reactive oxygen species (ROS) are produced by living cells as normal cellular metabolic byproduct. Under excessive stress conditions, cells will produce numerous ROS, and the living organisms eventually evolve series of response mechanisms to adapt to the ROS exposure as well as utilize it as the signaling molecules. ROS molecules would trigger oxidative stress in a feedback mechanism involving many biological processes, such as apoptosis, necrosis and autophagy. Growing evidences have suggested that ROS play a critical role as the signaling molecules throughout the entire cell death pathway. Overwhelming production of ROS can destroy organelles structure and bio-molecules, which lead to inflammatory response that is a known underpinning mechanism for the development of diabetes and cancer. Cytochrome P450 enzymes (CYP) are regarded as the markers of oxidative stress, can transform toxic metabolites into ROS, such as superoxide anion, hydrogen peroxide and hydroxyl radical which might cause injury of cells. Accordingly, cells have evolved a balanced system to neutralize the extra ROS, namely antioxidant systems that consist of enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidases (GPxs), thioredoxin (Trx) as well as the non-enzymatic antioxidants which collectively reduce oxidative state. Herein, we review the recent novel findings of cellular processes induced by ROS, and summarize the roles of cellular endogenous antioxidant systems as well as natural anti-oxidative compounds in several human diseases caused by ROS in order to illustrate the vital role of antioxidants in prevention against oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Toxic Heavy Metal and Metalloid Accumulation in Crop Plants and Foods.

            Arsenic, cadmium, lead, and mercury are toxic elements that are almost ubiquitously present at low levels in the environment because of anthropogenic influences. Dietary intake of plant-derived food represents a major fraction of potentially health-threatening human exposure, especially to arsenic and cadmium. In the interest of better food safety, it is important to reduce toxic element accumulation in crops. A molecular understanding of the pathways responsible for this accumulation can enable the development of crop varieties with strongly reduced concentrations of toxic elements in their edible parts. Such understanding is rapidly progressing for arsenic and cadmium but is in its infancy for lead and mercury. Basic discoveries have been made in Arabidopsis, rice, and other models, and most advances in crops have been made in rice. Proteins mediating the uptake of arsenic and cadmium have been identified, and the speciation and biotransformations of arsenic are now understood. Factors controlling the efficiency of root-to-shoot translocation and the partitioning of toxic elements through the rice node have also been identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strigolactones, a novel carotenoid-derived plant hormone.

              Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules. When released into the soil, SLs indicate the presence of a host to symbiotic fungi and root parasitic plants. In planta, they regulate several developmental processes that adapt plant architecture to nutrient availability. Highly branched/tillered mutants in Arabidopsis, pea, and rice have enabled the identification of four SL biosynthetic enzymes: a cis/trans-carotene isomerase, two carotenoid cleavage dioxygenases, and a cytochrome P450 (MAX1). In vitro and in vivo enzyme assays and analysis of mutants have shown that the pathway involves a combination of new reactions leading to carlactone, which is converted by a rice MAX1 homolog into an SL parent molecule with a tricyclic lactone moiety. In this review, we focus on SL biosynthesis, describe the hormonal and environmental factors that determine this process, and discuss SL transport and downstream signaling as well as the role of SLs in regulating plant development.
                Bookmark

                Author and article information

                Contributors
                Journal
                Environmental Pollution
                Environmental Pollution
                Elsevier BV
                02697491
                March 2021
                March 2021
                : 273
                : 116486
                Article
                10.1016/j.envpol.2021.116486
                33484996
                30859285-57b3-40fe-925a-b3cecc92a679
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article