23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanophotonic design of perovskite/silicon tandem solar cells

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The perovskite material system allows for the realization of perovskite/silicon tandem solar cells with high energy conversion efficiencies at low cost.

          Abstract

          The perovskite material system allows for the realization of perovskite/silicon tandem solar cells with high energy conversion efficiencies at low cost. To realize such solar cells, the device geometry, the device processing, and the contact materials have to be modified in comparison to single junction perovskite solar cells. In this study, perovskite/silicon tandem solar cells are designed allowing for the generation of short-circuit current densities and energy conversion efficiencies exceeding 20 mA cm −2 and 30%, while using realistic device structures. High short-circuit current densities can be achieved by minimizing reflection losses and optical losses of the contact layers. A hybrid approach is used to investigate the optics by combining finite-difference time-domain simulations with experimental measurements. Details on the nanophotonic design will be provided and discussed.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.

          Two organolead halide perovskite nanocrystals, CH(3)NH(3)PbBr(3) and CH(3)NH(3)PbI(3), were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells. When self-assembled on mesoporous TiO(2) films, the nanocrystalline perovskites exhibit strong band-gap absorptions as semiconductors. The CH(3)NH(3)PbI(3)-based photocell with spectral sensitivity of up to 800 nm yielded a solar energy conversion efficiency of 3.8%. The CH(3)NH(3)PbBr(3)-based cell showed a high photovoltage of 0.96 V with an external quantum conversion efficiency of 65%.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Detailed Balance Limit of Efficiency of p-n Junction Solar Cells

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequential deposition as a route to high-performance perovskite-sensitized solar cells.

              Following pioneering work, solution-processable organic-inorganic hybrid perovskites-such as CH3NH3PbX3 (X = Cl, Br, I)-have attracted attention as light-harvesting materials for mesoscopic solar cells. So far, the perovskite pigment has been deposited in a single step onto mesoporous metal oxide films using a mixture of PbX2 and CH3NH3X in a common solvent. However, the uncontrolled precipitation of the perovskite produces large morphological variations, resulting in a wide spread of photovoltaic performance in the resulting devices, which hampers the prospects for practical applications. Here we describe a sequential deposition method for the formation of the perovskite pigment within the porous metal oxide film. PbI2 is first introduced from solution into a nanoporous titanium dioxide film and subsequently transformed into the perovskite by exposing it to a solution of CH3NH3I. We find that the conversion occurs within the nanoporous host as soon as the two components come into contact, permitting much better control over the perovskite morphology than is possible with the previously employed route. Using this technique for the fabrication of solid-state mesoscopic solar cells greatly increases the reproducibility of their performance and allows us to achieve a power conversion efficiency of approximately 15 per cent (measured under standard AM1.5G test conditions on solar zenith angle, solar light intensity and cell temperature). This two-step method should provide new opportunities for the fabrication of solution-processed photovoltaic cells with unprecedented power conversion efficiencies and high stability equal to or even greater than those of today's best thin-film photovoltaic devices.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JMCAET
                Journal of Materials Chemistry A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2018
                2018
                : 6
                : 8
                : 3625-3633
                Affiliations
                [1 ]Department of Applied Physics
                [2 ]The Hong Kong Polytechnic University
                [3 ]Kowloon
                [4 ]Hong Kong
                [5 ]Research Center for Functional Materials and Nanomolecular Science
                [6 ]Jacobs University Bremen
                [7 ]28759 Bremen
                [8 ]Germany
                [9 ]Geballe Laboratory for Advanced Materials
                Article
                10.1039/C8TA00628H
                fe5e72a9-8fcd-473b-89bb-1e2308e9e394
                © 2018

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article