76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconstruction of Endometrium from Human Endometrial Side Population Cell Lines

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC) population recently identified by several groups using the side population (SP) technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP) cell lines (ICE 1–7): four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12–15 passages (20 weeks) and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3) and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN). Phenotype analysis corroborated their epithelial (CD9+) or stromal (vimentin+) cell origin and mesenchymal (CD90+, CD73+ and CD45−) attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα) or progesterone receptor (PR). The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Endometrial regenerative cells: A novel stem cell population

          Angiogenesis is a critical component of the proliferative endometrial phase of the menstrual cycle. Thus, we hypothesized that a stem cell-like population exist and can be isolated from menstrual blood. Mononuclear cells collected from the menstrual blood contained a subpopulation of adherent cells which could be maintained in tissue culture for >68 doublings and retained expression of the markers CD9, CD29, CD41a, CD44, CD59, CD73, CD90 and CD105, without karyotypic abnormalities. Proliferative rate of the cells was significantly higher than control umbilical cord derived mesenchymal stem cells, with doubling occurring every 19.4 hours. These cells, which we termed "Endometrial Regenerative Cells" (ERC) were capable of differentiating into 9 lineages: cardiomyocytic, respiratory epithelial, neurocytic, myocytic, endothelial, pancreatic, hepatic, adipocytic, and osteogenic. Additionally, ERC produced MMP3, MMP10, GM-CSF, angiopoietin-2 and PDGF-BB at 10–100,000 fold higher levels than two control cord blood derived mesenchymal stem cell lines. Given the ease of extraction and pluripotency of this cell population, we propose ERC as a novel alternative to current stem cells sources.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estrogen receptor null mice: what have we learned and where will they lead us?

            All scientific investigations begin with distinct objectives: first is the hypothesis upon which studies are undertaken to disprove, and second is the overall aim of obtaining further information, from which future and more precise hypotheses may be drawn. Studies focusing on the generation and use of gene-targeted animal models also apply these goals and may be loosely categorized into sequential phases that become apparent as the use of the model progresses. Initial studies of knockout models often focus on the plausibility of the model based on prior knowledge and whether the generation of an animal lacking the particular gene will prove lethal or not. Upon the successful generation of a knockout, confirmatory studies are undertaken to corroborate previously established hypotheses of the function of the disrupted gene product. As these studies continue, observations of unpredicted phenotypes or, more likely, the lack of a phenotype that was expected based on models put forth from past investigations are noted. Often the surprising phenotype is due to the loss of a gene product that is downstream from the functions of the disrupted gene, whereas the lack of an expected phenotype may be due to compensatory roles filled by alternate mechanisms. As the descriptive studies of the knockout continue, use of the model is often shifted to the role as a unique research reagent, to be used in studies that 1) were not previously possible in a wild-type model; 2) aimed at finding related proteins or pathways whose existence or functions were previously masked; or 3) the subsequent effects of the gene disruption on related physiological and biochemical systems. The alpha ERKO mice continue to satisfy the confirmatory role of a knockout quite well. As summarized in Table 4, the phenotypes observed in the alpha ERKO due to estrogen insensitivity have definitively illustrated several roles that were previously believed to be dependent on functional ER alpha, including 1) the proliferative and differentiative actions critical to the function of the adult female reproductive tract and mammary gland; 2) as an obligatory component in growth factor signaling in the uterus and mammary gland; 3) as the principal steroid involved in negative regulation of gonadotropin gene transcription and LH levels in the hypothalamic-pituitary axis; 4) as a positive regulator of PR expression in several tissues; 5) in the positive regulation of PRL synthesis and secretion from the pituitary; 6) as a promotional factor in oncogene-induced mammary neoplasia; and 7) as a crucial component in the differentiation and activation of several behaviors in both the female and male. The list of unpredictable phenotypes in the alpha ERKO must begin with the observation that generation of an animal lacking a functional ER alpha gene was successful and produced animals of both sexes that exhibit a life span comparable to wild-type. The successful generation of beta ERKO mice suggests that this receptor is also not essential to survival and was most likely not a compensatory factor in the survival of the alpha ERKO. In support of this is our recent successful generation of double knockout, or alpha beta ERKO mice of both sexes. The precise defects in certain components of male reproduction, including the production of abnormal sperm and the loss of intromission and ejaculatory responses that were observed in the alpha ERKO, were quite surprising. In turn, certain estrogen pathways in the alpha ERKO female appear intact or unaffected, such as the ability of the uterus to successfully exhibit a progesterone-induced decidualization response, and the possible maintenance of an LH surge system in the hypothalamus. [ABSTRACT TRUNCATED]
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue

              Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance,8 a clear role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unknown. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis revealed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, we show that UHRF1,9,10 a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A11,12 and B13, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                21 June 2011
                : 6
                : 6
                : e21221
                Affiliations
                [1 ]Fundación IVI-Instituto Universitario IVI, Universidad de Valencia, INCLIVA, Valencia, Spain
                [2 ]MRC/University of Edinburgh Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, United Kingdom
                [3 ]Valencian Node of the Spanish Stem Cell Bank, Prince Felipe Research Centre (CIPF), Unidad Mixta CIPF-UVEG, Valencia, Spain
                University of Córdoba, Spain
                Author notes

                Conceived and designed the experiments: IC AM CG-S HODC CS. Performed the experiments: IC AM CG-S LP AF PTKS. Analyzed the data: IC AM CG-S CS. Contributed reagents/materials/analysis tools: IC AM CG-S LP AF. Wrote the paper: IC AM CG-S CS.

                Article
                PONE-D-11-04638
                10.1371/journal.pone.0021221
                3119688
                21712999
                fd1a732b-cabb-4e5f-91ca-36c1c0f9ebc0
                Cervelló et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 7 March 2011
                : 23 May 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Reproductive System
                Reproductive Physiology
                Molecular Cell Biology
                Cellular Types
                Stem Cells
                Adult Stem Cells
                Mesenchymal Stem Cells
                Stem Cell Lines
                Somatic Cells
                Cytometry
                Medicine
                Obstetrics and Gynecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content681

                Cited by59

                Most referenced authors607