5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gridded pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modelling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. We present the first gridded and temporally continuous quantitative pollen-based plant-cover reconstruction for temperate and northern subtropical China over the Holocene (11.7 ka to present) obtained by applying the Regional Estimates of VEgetation Abundance from Large Sites (REVEALS) model. The objective is to provide a dataset of pollen-based land cover for the last ca. 12 millennia that is suitable for palaeoclimate modelling and for the evaluation of simulated past vegetation cover from dynamic vegetation models and anthropogenic land-cover change (ALCC) scenarios. The REVEALS reconstruction was achieved using 94 selected pollen records from lakes and bogs at a 1∘ × 1∘ spatial scale and a temporal resolution of 500 years between 11.7 and 0.7 ka and in three recent time windows (0.7–0.35 ka, 0.35–0.1 ka, and 0.1 ka to present). The dataset includes REVEALS estimates of cover and their standard errors (SEs) for 27 plant taxa in 75 1∘ × 1∘ grid cells distributed within the study region. The 27 plant taxa were also grouped into 6 plant functional types and 3 land-cover types (coniferous trees CT, broadleaved trees BT, and C3 herbs/open land (C3H/OL)), and their REVEALS estimates of cover and related SEs were calculated. We describe the protocol used for the selection of pollen records and the REVEALS application (with parameter settings) and explain the major rationales behind the protocol. As an illustration, we present, for eight selected time windows, gridded maps of the pollen-based REVEALS estimates of cover for the three land-cover types (CT, BT, and C3H/OL). We then discuss the reliability and limitations of the Chinese dataset of Holocene gridded REVEALS plant cover, and its current and potential uses. The dataset is available at the National Tibetan Plateau Data Center (TPDC; Li, 2022; https://doi.org/10.11888/Paleoenv.tpdc.272292).

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          Flexible paleoclimate age-depth models using an autoregressive gamma process

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative Interpretation of Fossil Pollen Spectra: Dissimilarity Coefficients and the Method of Modern Analogs

            Dissimilarity coefficients measure the difference between multivariate samples and provide a quantitative aid to the identification of modern analogs for fossil pollen samples. How eight coefficients responded to differences among modern pollen samples from eastern North America was tested. These coefficients represent three different classes: (1) unweighted coefficients that are most strongly influenced by large-valued pollen types, (2) equal-weight coefficients that weight all pollen types equally but can be too sensitive to variations among rare types, and (3) signal-to-noise coefficients that are intermediate in their weighting of pollen types. The studies with modern pollen allowed definition of critical values for each coefficient, which, when not exceeded, indicate that two pollen samples originate from the same vegetation region. Dissimilarity coefficients were used to compare modern and fossil pollen samples, and modern samples so similar to fossil samples were found that most of three late Quaternary pollen diagrams could be “reconstructed” by substituting modern samples for fossil samples. When the coefficients indicated that the fossil spectra had no modern analogs, then the reconstructed diagrams did not match all aspects of the originals. No modern analogs existed for samples from before 9300 yr B.P. at Kirchner Marsh, Minnesota, and from before 11,000 yr B.P. at Wintergreen Lake, Michigan, but modern analogs existed for almost all Holocene samples from these two sites and Brandreth Bog, New York.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Anthropogenic land use estimates for the Holocene – HYDE 3.2

              This paper presents an update and extension of HYDE, the History Database of the Global Environment (HYDE version 3.2). HYDE is an internally consistent combination of historical population estimates and allocation algorithms with time-dependent weighting maps for land use. Categories include cropland, with new distinctions for irrigated and rain-fed crops (other than rice) and irrigated and rain-fed rice. Grazing lands are also provided, divided into more intensively used pasture and less intensively used rangeland, and further specified with respect to conversion of natural vegetation to facilitate global change modellers. Population is represented by maps of total, urban, rural population, population density and built-up area. The period covered is 10 000 before Common Era (BCE) to 2015 Common Era (CE). All data can be downloaded from https://doi.org/10.17026/dans-25g-gez3 . We estimate that global population increased from 4.4 million people (we also estimate a lower range <  0.01 and an upper range of 8.9 million) in 10 000 BCE to 7.257 billion in 2015 CE, resulting in a global population density increase from 0.03 persons (or capita, in short cap) km −2 (range 0–0.07) to almost 56 cap km −2 respectively. The urban built-up area evolved from almost zero to roughly 58 Mha in 2015 CE, still only less than 0.5 % of the total land surface of the globe. Cropland occupied approximately less than 1 % of the global land area (13 037 Mha, excluding Antarctica) for a long time period until 1 CE, quite similar to the grazing land area. In the following centuries the share of global cropland slowly grew to 2.2 % in 1700 CE (ca. 293 Mha, uncertainty range 220–367 Mha), 4.4 % in 1850 CE (578 Mha, range 522–637 Mha) and 12.2 % in 2015 CE (ca. 1591 Mha, range 1572–1604 Mha). Cropland can be further divided into rain-fed and irrigated land, and these categories can be further separated into rice and non-rice. Rain-fed croplands were much more common, with 2.2 % in 1700 CE (289 Mha, range 217–361 Mha), 4.2 % (549 Mha, range 496–606 Mha) in 1850 CE and 10.1 % (1316 Mha, range 1298–1325 Mha) in 2015 CE, while irrigated croplands used less than 0.05 % (4.3 Mha, range 3.1–5.5 Mha), 0.2 % (28 Mha, range 25–31 Mha) and 2.1 % (277 Mha, range 273–278 Mha) in 1700, 1850 and 2015 CE, respectively. We estimate the irrigated rice area (paddy) to be 0.1 % (13 Mha, range 9–16 Mha) in 1700 CE, 0.2 % (28 Mha, range 26–31 Mha) in 1850 CE and 0.9 % (118 Mha, range 117–120 Mha) in 2015 CE. The estimates for land used for grazing are much more uncertain. We estimate that the share of grazing land grew from 5.1 % in 1700 CE (667 Mha, range 507–820 Mha) to 9.6 % in 1850 CE (1192 Mha, range 1068–1304 Mha) and 24.9 % in 2015 CE (3241 Mha, range 3211–3270 Mha). To aid the modelling community we have divided land used for grazing into more intensively used pasture, less intensively used converted rangeland and less or unmanaged natural unconverted rangeland. Pasture occupied 1.1 % in 1700 CE (145 Mha, range 79–175 Mha), 1.9 % in 1850 CE (253 Mha, range 218–287 Mha) and 6.0 % (787 Mha, range 779–795 Mha) in 2015 CE, while rangelands usually occupied more space due to their occurrence in more arid regions and thus lower yields to sustain livestock. We estimate converted rangeland at 0.6 % in 1700 CE (82 Mha range 66–93 Mha), 1 % in 1850 CE (129 Mha range 118–136 Mha) and 2.4 % in 2015 CE (310 Mha range 306–312 Mha), while the unconverted natural rangelands occupied approximately 3.4 % in 1700 CE (437 Mha, range 334–533 Mha), 6.2 % in 1850 CE (810 Mha, range 733–881 Mha) and 16.5 % in 2015 CE (2145 Mha, range 2126–2164 Mha).
                Bookmark

                Author and article information

                Contributors
                Journal
                Earth System Science Data
                Earth Syst. Sci. Data
                Copernicus GmbH
                1866-3516
                2023
                January 06 2023
                : 15
                : 1
                : 95-112
                Article
                10.5194/essd-15-95-2023
                f3cd99da-f836-400d-b25e-e872d53a3d4d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article