4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      High-throughput screening of tribological properties of monolayer films using molecular dynamics and machine learning

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monolayer films have shown promise as a lubricating layer to reduce friction and wear of mechanical devices with separations on the nanoscale. These films have a vast design space with many tunable properties that can affect their tribological effectiveness. For example, terminal group chemistry, film composition, and backbone chemistry can all lead to films with significantly different tribological properties. This design space, however, is very difficult to explore without a combinatorial approach and an automatable, reproducible, and extensible workflow to screen for promising candidate films. Using the Molecular Simulation Design Framework (MoSDeF), a combinatorial screening study was performed to explore 9747 unique monolayer films (116 964 total simulations) and a machine learning (ML) model using a random forest regressor, an ensemble learning technique, to explore the role of terminal group chemistry and its effect on tribological effectiveness. The most promising films were found to contain small terminal groups such as cyano and ethylene. The ML model was subsequently applied to screen terminal group candidates identified from the ChEMBL small molecule library. Approximately 193 131 unique film candidates were screened with approximately a five order of magnitude speed-up in analysis compared to simulation alone. The ML model was thus able to be used as a predictive tool to greatly speed up the initial screening of promising candidate films for future simulation studies, suggesting that computational screening in combination with ML can greatly increase the throughput in combinatorial approaches to generate in silico data and then train ML models in a controlled, self-consistent fashion.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Highly accurate protein structure prediction with AlphaFold

          Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort 1 – 4 , the structures of around 100,000 unique proteins have been determined 5 , but this represents a small fraction of the billions of known protein sequences 6 , 7 . Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence—the structure prediction component of the ‘protein folding problem’ 8 —has been an important open research problem for more than 50 years 9 . Despite recent progress 10 – 14 , existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14) 15 , demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm. AlphaFold predicts protein structures with an accuracy competitive with experimental structures in the majority of cases using a novel deep learning architecture.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                The Journal of Chemical Physics
                J. Chem. Phys.
                AIP Publishing
                0021-9606
                1089-7690
                April 21 2022
                April 21 2022
                : 156
                : 15
                : 154902
                Affiliations
                [1 ]Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
                [2 ]Interdiscplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
                [3 ]Multiscale Modeling and Simulation Center, Vanderbilt University, Nashville, Tennessee 37235, USA
                [4 ]Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, USA
                Article
                10.1063/5.0080838
                35459321
                f34e8b61-30b6-4225-8bfd-8c3f324f6133
                © 2022

                https://publishing.aip.org/authors/rights-and-permissions

                History

                Comments

                Comment on this article