34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fecal microbiota transplantation protects rotenone-induced Parkinson’s disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Parkinson’s disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis.

          Results

          We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon.

          Conclusions

          Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40168-021-01107-9.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Metagenomic biomarker discovery and explanation

          This study describes and validates a new method for metagenomic biomarker discovery by way of class comparison, tests of biological consistency and effect size estimation. This addresses the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities, which is a central problem to the study of metagenomics. We extensively validate our method on several microbiomes and a convenient online interface for the method is provided at http://huttenhower.sph.harvard.edu/lefse/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            UPARSE: highly accurate OTU sequences from microbial amplicon reads.

            Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.

              The Ribosomal Database Project (RDP) Classifier, a naïve Bayesian classifier, can rapidly and accurately classify bacterial 16S rRNA sequences into the new higher-order taxonomy proposed in Bergey's Taxonomic Outline of the Prokaryotes (2nd ed., release 5.0, Springer-Verlag, New York, NY, 2004). It provides taxonomic assignments from domain to genus, with confidence estimates for each assignment. The majority of classifications (98%) were of high estimated confidence (> or = 95%) and high accuracy (98%). In addition to being tested with the corpus of 5,014 type strain sequences from Bergey's outline, the RDP Classifier was tested with a corpus of 23,095 rRNA sequences as assigned by the NCBI into their alternative higher-order taxonomy. The results from leave-one-out testing on both corpora show that the overall accuracies at all levels of confidence for near-full-length and 400-base segments were 89% or above down to the genus level, and the majority of the classification errors appear to be due to anomalies in the current taxonomies. For shorter rRNA segments, such as those that might be generated by pyrosequencing, the error rate varied greatly over the length of the 16S rRNA gene, with segments around the V2 and V4 variable regions giving the lowest error rates. The RDP Classifier is suitable both for the analysis of single rRNA sequences and for the analysis of libraries of thousands of sequences. Another related tool, RDP Library Compare, was developed to facilitate microbial-community comparison based on 16S rRNA gene sequence libraries. It combines the RDP Classifier with a statistical test to flag taxa differentially represented between samples. The RDP Classifier and RDP Library Compare are available online at http://rdp.cme.msu.edu/.
                Bookmark

                Author and article information

                Contributors
                zhaoz2017@sina.com
                ningjingwen@imm.ac.cn
                baoxiuqi@imm.ac.cn
                shangmeiyu@imm.ac.cn
                majingwei@imm.ac.cn
                ligen@imm.ac.cn
                danzhang@imm.ac.cn
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                17 November 2021
                17 November 2021
                2021
                : 9
                : 226
                Affiliations
                GRID grid.506261.6, ISNI 0000 0001 0706 7839, State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, , Chinese Academy of Medical Sciences and Peking Union Medical College, ; 1 Xian Nong Tan Street, Beijing, 100050 China
                Author information
                http://orcid.org/0000-0001-9792-4549
                Article
                1107
                10.1186/s40168-021-01107-9
                8597301
                34784980
                f2a1f98a-3997-41cb-8e3e-d002c23215cf
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 15 March 2021
                : 2 June 2021
                Funding
                Funded by: National Sciences Foundation of China
                Award ID: 81773718
                Award ID: 81630097
                Award ID: 81773589
                Award Recipient :
                Funded by: The National Key Research and Development Program of China
                Award ID: SQ2018YFA090025-04
                Award Recipient :
                Funded by: CAMS Innovation Fund for Medical Sciences
                Award ID: 2016-I2M-3-011
                Award Recipient :
                Funded by: The Drug Innovation Major Project
                Award ID: 2018ZX09711001-003-020
                Award ID: 2018ZX09711001-003-005
                Award ID: 2018ZX09711001-008-005
                Award Recipient :
                Funded by: CAMS The Fundamental Research Funds for the Central Universities
                Award ID: 2018RC350002
                Award Recipient :
                Funded by: CAMS & PUMC Innovation Fund for Graduate
                Award ID: 2019-1007-23
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                fecal microbiota transplantation,parkinson’s disease,rotenone-induced mouse model,microbiota-gut-brain axis,16s rna sequencing

                Comments

                Comment on this article