37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson’s disease (PD) is the second most common neurodegenerative disease characterized by motor dysfunction. Growing evidence has demonstrated that gut dysbiosis is involved in the occurrence, development and progression of PD. Numerous clinical trials have identified the characteristics of the changed gut microbiota profiles, and preclinical studies in PD animal models have indicated that gut dysbiosis can influence the progression and onset of PD via increasing intestinal permeability, aggravating neuroinflammation, aggregating abnormal levels of α-synuclein fibrils, increasing oxidative stress, and decreasing neurotransmitter production. The gut microbiota can be considered promising diagnostic and therapeutic targets for PD, which can be regulated by probiotics, psychobiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, diet modifications, and Chinese medicine. This review summarizes the recent studies in PD-associated gut microbiota profiles and functions, the potential roles, and mechanisms of gut microbiota in PD, and gut microbiota-targeted interventions for PD. Deciphering the underlying roles and mechanisms of the PD-associated gut microbiota will help interpret the pathogenesis of PD from new perspectives and elucidate novel therapeutic strategies for PD.

          Related collections

          Most cited references214

          • Record: found
          • Abstract: found
          • Article: not found

          Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors

          Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis induce sustained clinical responses in a sizeable minority of cancer patients. Here, we show that primary resistance to ICI can be due to abnormal gut microbiome composition. Antibiotics (ATB) inhibited the clinical benefit of ICI in patients with advanced cancer. Fecal microbiota transplantation (FMT) from cancer patients who responded to ICI (but not from non-responding patients) into germ-free or ATB-treated mice ameliorated the antitumor effects of PD-1 blockade. Metagenomics of patient stools at diagnosis revealed correlations between clinical responses to ICI and the relative abundance of Akkermansia muciniphila. Oral supplementation with A. muciniphila post-FMT with non-responder feces restored the efficacy of PD-1 blockade in an IL-12-dependent manner, by increasing the recruitment of CCR9+CXCR3+CD4+ T lymphocytes into tumor beds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Linking long-term dietary patterns with gut microbial enterotypes.

            Diet strongly affects human health, partly by modulating gut microbiome composition. We used diet inventories and 16S rDNA sequencing to characterize fecal samples from 98 individuals. Fecal communities clustered into enterotypes distinguished primarily by levels of Bacteroides and Prevotella. Enterotypes were strongly associated with long-term diets, particularly protein and animal fat (Bacteroides) versus carbohydrates (Prevotella). A controlled-feeding study of 10 subjects showed that microbiome composition changed detectably within 24 hours of initiating a high-fat/low-fiber or low-fat/high-fiber diet, but that enterotype identity remained stable during the 10-day study. Thus, alternative enterotype states are associated with long-term diet.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases

              Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                24 June 2022
                2022
                : 13
                : 937555
                Affiliations
                [1] 1Department of Geriatrics, Lishui Second People’s Hospital , Lishui, China
                [2] 2Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
                [3] 3Department of Respiratory Medicine, Lishui Central Hospital , Lishui, China
                [4] 4Department of Laboratory Medicine, Lishui Second People’s Hospital , Lishui, China
                [5] 5Jinan Microecological Biomedicine Shandong Laboratory , Jinan, China
                [6] 6Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
                Author notes

                Edited by: Zhihong Sun, Inner Mongolia Agricultural University, China

                Reviewed by: Jing Sun, Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China; Zhipeng Xu, Nanjing Medical University, China; Xin Zhou, Stanford University, United States

                †These authors have contributed equally to this work

                This article was submitted to Microbial Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2022.937555
                9263276
                35812394
                1b24078b-9dd9-4d12-8c9d-7bfb1724ef53
                Copyright © 2022 Zhu, Liu, Ye, Yan, Cheng, Zhao, Chen and Ling

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 May 2022
                : 26 May 2022
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 214, Pages: 19, Words: 10688
                Categories
                Immunology
                Review

                Immunology
                α-synuclein,diet,gut microbiota,microbiota-targeted therapy,parkinson’s disease
                Immunology
                α-synuclein, diet, gut microbiota, microbiota-targeted therapy, parkinson’s disease

                Comments

                Comment on this article