44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Methods to Evaluate Skin Penetration In Vitro

      , , , , ,
      Scientia Pharmaceutica
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dermal and transdermal drug therapy is increasing in importance nowadays in drug development. To completely utilize the potential of this administration route, it is necessary to optimize the drug release and skin penetration measurements. This review covers the most well-known and up-to-date methods for evaluating the cutaneous penetration of drugs in vitro as a supporting tool for pharmaceutical research scientists in the early stage of drug development. The aim of this article is to present various experimental models used in dermal/transdermal research and summarize the novel knowledge about the main in vitro methods available to study skin penetration. These techniques are: Diffusion cell, skin-PAMPA, tape stripping, two-photon microscopy, confocal laser scanning microscopy, and confocal Raman microscopic method.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy.

          Label-free chemical contrast is highly desirable in biomedical imaging. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. Here we report a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-free and readily interpretable chemical contrast. We show a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Skin tissue engineering--in vivo and in vitro applications.

            Significant progress has been made over the years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin or for the establishment of human-based in vitro skin models. This review summarizes these advances in in vivo and in vitro applications of tissue-engineered skin. We further highlight novel efforts in the design of complex disease-in-a-dish models for studies ranging from disease etiology to drug development and screening. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel mechanisms and devices to enable successful transdermal drug delivery.

              B.W. Barry (2001)
              Optimisation of drug delivery through human skin is important in modern therapy. This review considers drug-vehicle interactions (drug or prodrug selection, chemical potential control, ion pairs, coacervates and eutectic systems) and the role of vesicles and particles (liposomes, transfersomes, ethosomes, niosomes). We can modify the stratum corneum by hydration and chemical enhancers, or bypass or remove this tissue via microneedles, ablation and follicular delivery. Electrically assisted methods (ultrasound, iontophoresis, electroporation, magnetophoresis, photomechanical waves) show considerable promise. Of particular interest is the synergy between chemical enhancers, ultrasound, iontophoresis and electroporation.
                Bookmark

                Author and article information

                Journal
                SCPHA4
                Scientia Pharmaceutica
                Sci. Pharm.
                MDPI AG
                2218-0532
                September 2019
                August 08 2019
                : 87
                : 3
                : 19
                Article
                10.3390/scipharm87030019
                ed58f30d-c5d8-454e-8eda-c05a91dd73d1
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article