0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Humin‐promoted microbial electrosynthesis of acetate from CO 2 by Moorella thermoacetica

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Humin, an insoluble fraction of humic substances at any pH, has been reported to be an extracellular electron mediator (EEM) that functions in carbon dioxide (CO 2)‐fixing acetogenesis. Here, we show that humin promotes the microbial electrosynthesis (MES) of acetate from CO 2 using Moorella thermoacetica. Yeast extract, essential for the reaction of M. thermoacetica, resulted in the heterotrophic production of organic acids including acetate, hydrogen, and methane. Excluding the effect of yeast extract, MES with 13 g/L of suspended humin poised at −510 mV (vs. Ag/AgCl) achieved a CO 2‐fixing acetate production of 24.2 mg‐acetate/L/day (1.9 mg‐acetate/day/g‐humin); this is 10‐folds higher than the humin‐free MES, with 90.3% of the coulombic efficiency. Although M. thermoacetica is an electroactive bacterium, it obtains electrons for acetogenesis mostly via humin. The suspended humin‐assisted MES poised at −810 mV (vs. Ag/AgCl) increased the acetate production rate to 39.3 mg‐acetate/L/day using electrons mainly from electrolyzed hydrogen and humin. Immobilization increased the humin's EEM efficiency, as indicated by the acetate production rate of 20.8 mg‐acetate/L/day (6.9 mg‐acetate/day/g‐humin) with a 98.7% coulombic efficiency in MES with 3 g/L of immobilized humin poised at −510 mV (vs. Ag/AgCl). These results suggest that humin‐assisted MES has high potential for microbial CO 2 fixation.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          A comprehensive review on PEM water electrolysis

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Old acetogens, new light.

            Acetogens utilize the acetyl-CoA Wood-Ljungdahl pathway as a terminal electron-accepting, energy-conserving, CO(2)-fixing process. The decades of research to resolve the enzymology of this pathway (1) preceded studies demonstrating that acetogens not only harbor a novel CO(2)-fixing pathway, but are also ecologically important, and (2) overshadowed the novel microbiological discoveries of acetogens and acetogenesis. The first acetogen to be isolated, Clostridium aceticum, was reported by Klaas Tammo Wieringa in 1936, but was subsequently lost. The second acetogen to be isolated, Clostridium thermoaceticum, was isolated by Francis Ephraim Fontaine and co-workers in 1942. C. thermoaceticum became the most extensively studied acetogen and was used to resolve the enzymology of the acetyl-CoA pathway in the laboratories of Harland Goff Wood and Lars Gerhard Ljungdahl. Although acetogenesis initially intrigued few scientists, this novel process fostered several scientific milestones, including the first (14)C-tracer studies in biology and the discovery that tungsten is a biologically active metal. The acetyl-CoA pathway is now recognized as a fundamental component of the global carbon cycle and essential to the metabolic potentials of many different prokaryotes. The acetyl-CoA pathway and variants thereof appear to be important to primary production in certain habitats and may have been the first autotrophic process on earth and important to the evolution of life. The purpose of this article is to (1) pay tribute to those who discovered acetogens and acetogenesis, and to those who resolved the acetyl-CoA pathway, and (2) highlight the ecology and physiology of acetogens within the framework of their scientific roots.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Microbial Electrosynthesis: Feeding Microbes Electricity To Convert Carbon Dioxide and Water to Multicarbon Extracellular Organic Compounds

              INTRODUCTION The intermittent nature of renewable sources of energy, most notably solar and wind, is leading to a search for strategies to capture the electrical energy produced from these sources in covalent chemical bonds, producing compounds that can readily be stored and consumed on demand, preferably within the existing infrastructure (1). One particularly attractive option is to reduce carbon dioxide to produce multicarbon organic compounds that are precursors for desirable organic chemicals or liquid transportation fuels (2). Basic requirements for a practical system to fix carbon dioxide in this manner include (i) the ability to use electrons derived from water as an abundant, inexpensive source of reductant (1, 2); and (ii) inexpensive, durable catalysts (3). Reaction thermodynamics suggests that it should be readily feasible to electrochemically reduce carbon dioxide to a diversity of organic compounds, and this process has been studied for over a hundred years (4, 5). However, in practice, abiotic electrochemical reduction of carbon dioxide has not proven practical in large part due to (i) poor long-term stability of the cathodes, (ii) nonspecificity of products produced, (iii) sluggishness of carbon dioxide reduction, (iv) competition with hydrogen production, and (v) cathode expense (3). Incorporating enzyme catalysts on electrodes may promote more specific product formation from electrochemical reduction of carbon dioxide and lower the energy required for reduction (3), but experiments on enzymatic reduction have typically lasted only a matter of hours, reflecting the fact that enzymes adsorbed to electrodes do not have long-term stability. Acetogenic bacteria can reduce carbon dioxide to acetate and other multicarbon extracellular products with hydrogen as the electron donor (6, 7). However, supplying acetogens with hydrogen that is produced electrochemically is unlikely to be practical because it would require expensive catalysts and/or substantial energy inputs (8). An alternative might be to directly feed acetogens electrons with electrodes. Geobacter and Anaeromyxobacter species have previously been shown to accept electrons from graphite electrodes for the reduction of fumarate to succinate (9), the reduction of nitrate to nitrite (9), U(VI) reduction (10), or reductive dechlorination (11, 12). It has also been suggested that it may be possible to directly supply methanogenic microorganisms electrons at electrode surfaces for carbon dioxide reduction to methane (13), but this has been difficult to verify because there can be significant electrochemical hydrogen production at the low electrode potentials required for active methanogenesis (14). Culturing in H cells. We evaluated the possibility of feeding an acetogen electrons from an electrode with Sporomusa ovata (15) (Deutsche Sammlung Mikroorganismen und Zellkulturen [DSMZ] culture 2662). Cells were grown in the cathode chambers of “H cells” (Fig. 1a), which have previously been used to evaluate other forms of electrode-driven anaerobic respiration (9–12). The cathode and anode were comprised of unpolished graphite sticks. The anode and cathode chambers, each containing 200 ml of medium, were separated with a Nafion cation-exchange membrane. A potentiostat maintained a potential difference between the anode and cathode. Electrons extracted from water at the anode were delivered to the cathode at −400 mV (versus standard hydrogen electrode), a potential well above the −600 mV necessary to produce even low levels of hydrogen with unpolished graphite (8). The lack of hydrogen production was verified by directly measuring hydrogen concentrations with a reduction gas analyzer as previously described (9). In most instances, the electrical current was obtained from a standard electrical outlet, but a solar-powered potentiostat (Fig. 1a), comprised of a solar panel and voltage control unit built with standard electrical components, could also support the system. FIG 1 (a) H-cell device for supplying cathode biofilms of S. ovata electrons derived from water. The solar-powered option is illustrated. 8 e−, 8 electrons. (b) Electron consumption and product formation by a representative S. ovata biofilm over time. The data shown were obtained with a system connected to a standard electric current. The mean standard errors of the organic acid and current measurements were 2% and 13%, respectively. An inoculum of S. ovata was grown with hydrogen as the electron donor (H2-CO2 [80:20]) in the DSMZ-recommended growth medium (DSMZ 311) with betaine, Casitone, and resazurin omitted. The hydrogen-grown cells were introduced into the cathode chamber in the same medium but with the yeast extract and the cysteine and sulfide reductants omitted. This bicarbonate-based medium contained no organic compounds other than a vitamin mixture, and carbon dioxide was the sole electron acceptor. The culture was initially bubbled with a hydrogen-containing gas mixture (N2-CO2-H2 [80:13:7]) as an additional electron donor to accelerate the growth of a biofilm on the cathode surface. Acetate was measured with high-performance liquid chromatography (HPLC) (16). Once acetate reached 10 mM, 50% of the medium was replaced with fresh medium. This process was repeated three times. This periodic removal of planktonic cells promoted biofilm growth on the cathode. The gas phase was then switched to N2-CO2 (80:20). Once the consumption of current was observed (within 24 h), the system was switched to flowthrough mode in which fresh medium maintained under N2-CO2 was continuously introduced (0.1 ml/min; dilution rate of 0.03 h−1) as previously described (16, 17). Hydrogen partial pressures in the headspace remained less than 10 ppm throughout the study, ca. 2 orders of magnitude below the minimum threshold for acetate production from hydrogen by acetogens (18). Systems with S. ovata steadily consumed current with the production of acetate and small amounts of 2-oxobutyrate (Fig. 1b). Uninoculated controls did not consume current or produce organic acids. If the current supply to the S. ovata biofilm was interrupted, acetate and 2-oxobutyrate production stopped. Although it was not possible to measure carbon dioxide consumption due to the high concentrations of bicarbonate in the medium, it was possible to calculate an electron balance. Electrons appearing in acetate accounted for a high proportion of the electrons that the cultures consumed (Fig. 1b). In three replicate cultures, the electron recovery in acetate and 2-oxobutyrate was 86% ± 21% of the electrons transferred at the cathodes. These results demonstrated that S. ovata could accept electrons from graphite electrodes with the reduction of carbon dioxide and that most of the electrons transferred from the electrodes to the cells were diverted toward extracellular products, rather than biomass formation. The S. ovata cathode biofilms were robust and have been run for periods of more than 3 months without losing their capacity for current consumption and acetate production. The long-term viability of S. ovata biofilms was further evident from confocal scanning laser microscopy of a biofilm that had been fixing carbon dioxide for 3 months. The cells in biofilms treated with LIVE/DEAD BacLight viability stain, as previously described (16, 17), stained green, suggesting that they were healthy and metabolically active (Fig. 2a). The biofilms were relatively thin, similar to the biofilms previously described for other microorganisms growing on cathodes (9, 11, 12). This was further confirmed with scanning electron micrographs of the cathode surface (Fig. 2b), prepared as previously described (19). The cells appeared to be intimately associated with the graphite surface, as would be expected for direct electrode-to-cell electron transfer (9, 11, 12). There was no visible turbidity in the cathode chamber, consistent with previous studies on direct electrode-driven respiration (9–12) and further suggesting that biofilm cells were primarily responsible for current consumption and carbon dioxide reduction. FIG 2 Cathode biofilms of S. ovata. (a) Confocal scanning laser microscopic images (top down and side views) of cathode surface. Cells were stained with LIVE/DEAD BacLight viability stain. (b) Scanning electron microscopic image of cathode surface with cells highlighted in yellow. Implications. These results demonstrate that S. ovata is capable of using electrons derived from an electrode as the sole electron donor for the reduction of carbon dioxide to acetate. The high coulumbic efficiencies of acetate production (electrons appearing in acetate/electrons consumed as current) are consistent with the following reaction: 2CO2 + 2 H2O → CH3COOH + 2O2. This conversion of carbon dioxide and water to an organic compound and oxygen is the same net reaction as oxygenic photosynthesis. We propose the term microbial electrosynthesis for the reduction of carbon dioxide to multicarbon compounds with electrons donated from an electrode as the electron donor. Microbial electrosynthesis differs significantly from photosynthesis in that carbon and electron flow is directed primarily to the formation of extracellular products, rather than biomass. Biomass typically requires extensive additional processing for chemical or fuel production. When coupled to a photovoltaic system, microbial electrosynthesis offers a new photosynthetic technology for the production of organic products with the added advantage that photovoltaic technology is orders of magnitude more effective in capturing solar energy than photosynthesis is (20). Although acetate has economic value (6), a more important consideration is that acetate is formed from acetyl coenzyme A (acetyl-CoA) (6, 7), which is the central intermediate for the genetically engineered production of a wide range of chemical commodities as well as potential liquid transportation fuels (21, 22). The fact that small amounts of 2-oxobutyrate were produced, in addition to acetate, demonstrates that even without any engineering, some carbon and electron flow was diverted away from acetate production. The acetogen Clostridium ljungdahlii has recently been genetically engineered to produce the gasoline substitute butanol from acetyl-CoA (23). Attempts to genetically engineer S. ovata and other acetogens to produce products other than acetate via microbial electrosynthesis are under way.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Biotechnology and Bioengineering
                Biotech & Bioengineering
                Wiley
                0006-3592
                1097-0290
                December 2022
                October 03 2022
                December 2022
                : 119
                : 12
                : 3487-3496
                Affiliations
                [1 ] Department of Civil Engineering, Graduate School of Engineering, Tokai National Higher Education and Research System Nagoya University Chikusa Japan
                [2 ] Institute of Materials and Systems for Sustainability, Tokai National Higher Education and Research System Nagoya University Chikusa Japan
                Article
                10.1002/bit.28238
                36109850
                ecd61989-025c-4ae0-954f-3af302c8a40b
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article