30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Assessment of Rumen Microbiota from a Large Dairy Cattle Cohort Reveals the Pan and Core Bacteriomes Contributing to Varied Phenotypes

      , , , ,
      Applied and Environmental Microbiology
      American Society for Microbiology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Currently, knowledge on the extent to which rumen microbiota differ in a large population of cattle fed the same diet and whether such differences are associated with animal performance is limited. This study was conducted to characterize the rumen microbiota of a large cohort of lactating Holstein dairy cows ( n = 334) that were fed the same diet and raised under the same environment, aiming to uncover linkages between core and pan rumen microbiomes and host phenotypes. Amplicon sequencing of the partial 16S rRNA gene identified 391 bacterial genera in the pan bacteriome and 33 genera in the core bacteriome. Interanimal variation existed in the pan and core bacteriomes, with the effect of lactation stage being more prominent than that of parity (the number of pregnancies, ranging from 2 to 7) and sire. Spearman's correlation network analysis revealed significant correlations among bacteria, rumen short-chain fatty acids, and lactation performance, with the core and noncore genera accounting for 53.9 and 46.2% of the network, respectively. These results suggest that the pan rumen bacteriome together with the core bacteriome potentially contributes to variations in milk production traits. Our findings provide an understanding of the potential functions of noncore rumen microbes, suggesting the possibility of enhancing bacterial fermentation using strategies to manipulate the core and noncore bacteriomes for improved cattle performance.

          IMPORTANCE This study revealed the rumen bacteriome from a large dairy cattle cohort ( n = 334) raised under the same management and showed the linkages among the rumen core and pan bacteriomes, rumen short-chain fatty acids, and milk production phenotypes. The findings from this study suggest that the pan rumen bacteriome, together with the core bacteriome, potentially contributes to variations in host milk production traits. Fundamental knowledge on the rumen core and pan microbiomes and their roles in contributing to lactation performance provides novel insights into future strategies for manipulating rumen microbiota to enhance milk production in dairy cattle.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          FLASH: fast length adjustment of short reads to improve genome assemblies.

          Next-generation sequencing technologies generate very large numbers of short reads. Even with very deep genome coverage, short read lengths cause problems in de novo assemblies. The use of paired-end libraries with a fragment size shorter than twice the read length provides an opportunity to generate much longer reads by overlapping and merging read pairs before assembling a genome. We present FLASH, a fast computational tool to extend the length of short reads by overlapping paired-end reads from fragment libraries that are sufficiently short. We tested the correctness of the tool on one million simulated read pairs, and we then applied it as a pre-processor for genome assemblies of Illumina reads from the bacterium Staphylococcus aureus and human chromosome 14. FLASH correctly extended and merged reads >99% of the time on simulated reads with an error rate of <1%. With adequately set parameters, FLASH correctly merged reads over 90% of the time even when the reads contained up to 5% errors. When FLASH was used to extend reads prior to assembly, the resulting assemblies had substantially greater N50 lengths for both contigs and scaffolds. The FLASH system is implemented in C and is freely available as open-source code at http://www.cbcb.umd.edu/software/flash. t.magoc@gmail.com.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Composition and Similarity of Bovine Rumen Microbiota across Individual Animals

            The bovine rumen houses a complex microbiota which is responsible for cattle's remarkable ability to convert indigestible plant mass into food products. Despite this ecosystem's enormous significance for humans, the composition and similarity of bacterial communities across different animals and the possible presence of some bacterial taxa in all animals' rumens have yet to be determined. We characterized the rumen bacterial populations of 16 individual lactating cows using tag amplicon pyrosequencing. Our data showed 51% similarity in bacterial taxa across samples when abundance and occurrence were analyzed using the Bray-Curtis metric. By adding taxon phylogeny to the analysis using a weighted UniFrac metric, the similarity increased to 82%. We also counted 32 genera that are shared by all samples, exhibiting high variability in abundance across samples. Taken together, our results suggest a core microbiome in the bovine rumen. Furthermore, although the bacterial taxa may vary considerably between cow rumens, they appear to be phylogenetically related. This suggests that the functional requirement imposed by the rumen ecological niche selects taxa that potentially share similar genetic features.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome

              Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.
                Bookmark

                Author and article information

                Journal
                Applied and Environmental Microbiology
                Appl Environ Microbiol
                American Society for Microbiology
                0099-2240
                1098-5336
                October 01 2018
                September 17 2018
                July 27 2018
                : 84
                : 19
                Article
                10.1128/AEM.00970-18
                6146982
                30054362
                e4daef75-ed27-4f30-8a34-c045930c53c9
                © 2018
                History

                Comments

                Comment on this article