42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recently, we reported that some dairy cows could produce high amounts of milk with high amounts of protein (defined as milk protein yield [MPY]) when a population was raised under the same nutritional and management condition, a potential new trait that can be used to increase high-quality milk production. It is unknown to what extent the rumen microbiome and its metabolites, as well as the host metabolism, contribute to MPY. Here, analysis of rumen metagenomics and metabolomics, together with serum metabolomics was performed to identify potential regulatory mechanisms of MPY at both the rumen microbiome and host levels.

          Results

          Metagenomics analysis revealed that several Prevotella species were significantly more abundant in the rumen of high-MPY cows, contributing to improved functions related to branched-chain amino acid biosynthesis. In addition, the rumen microbiome of high-MPY cows had lower relative abundances of organisms with methanogen and methanogenesis functions, suggesting that these cows may produce less methane. Metabolomics analysis revealed that the relative concentrations of rumen microbial metabolites (mainly amino acids, carboxylic acids, and fatty acids) and the absolute concentrations of volatile fatty acids were higher in the high-MPY cows. By associating the rumen microbiome with the rumen metabolome, we found that specific microbial taxa (mainly Prevotella species) were positively correlated with ruminal microbial metabolites, including the amino acids and carbohydrates involved in glutathione, phenylalanine, starch, sucrose, and galactose metabolism. To detect the interactions between the rumen microbiome and host metabolism, we associated the rumen microbiome with the host serum metabolome and found that Prevotella species may affect the host’s metabolism of amino acids (including glycine, serine, threonine, alanine, aspartate, glutamate, cysteine, and methionine). Further analysis using the linear mixed effect model estimated contributions to the variation in MPY based on different omics and revealed that the rumen microbial composition, functions, and metabolites, and the serum metabolites contributed 17.81, 21.56, 29.76, and 26.78%, respectively, to the host MPY.

          Conclusions

          These findings provide a fundamental understanding of how the microbiome-dependent and host-dependent mechanisms contribute to varied individualized performance in the milk production quality of dairy cows under the same management condition. This fundamental information is vital for the development of potential manipulation strategies to improve milk quality and production through precision feeding.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Food consumption trends and drivers

          A picture of food consumption (availability) trends and projections to 2050, both globally and for different regions of the world, along with the drivers largely responsible for these observed consumption trends are the subject of this review. Throughout the world, major shifts in dietary patterns are occurring, even in the consumption of basic staples towards more diversified diets. Accompanying these changes in food consumption at a global and regional level have been considerable health consequences. Populations in those countries undergoing rapid transition are experiencing nutritional transition. The diverse nature of this transition may be the result of differences in socio-demographic factors and other consumer characteristics. Among other factors including urbanization and food industry marketing, the policies of trade liberalization over the past two decades have implications for health by virtue of being a factor in facilitating the ‘nutrition transition’ that is associated with rising rates of obesity and chronic diseases such as cardiovascular disease and cancer. Future food policies must consider both agricultural and health sectors, thereby enabling the development of coherent and sustainable policies that will ultimately benefit agriculture, human health and the environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MetPA: a web-based metabolomics tool for pathway analysis and visualization.

            MetPA (Metabolomics Pathway Analysis) is a user-friendly, web-based tool dedicated to the analysis and visualization of metabolomic data within the biological context of metabolic pathways. MetPA combines several advanced pathway enrichment analysis procedures along with the analysis of pathway topological characteristics to help identify the most relevant metabolic pathways involved in a given metabolomic study. The results are presented in a Google-map style network visualization system that supports intuitive and interactive data exploration through point-and-click, dragging and lossless zooming. Additional features include a comprehensive compound library for metabolite name conversion, automatic generation of analysis report, as well as the implementation of various univariate statistical procedures that can be accessed when users click on any metabolite node on a pathway map. MetPA currently enables analysis and visualization of 874 metabolic pathways, covering 11 common model organisms. Freely available at http://metpa.metabolomics.ca.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factors that alter rumen microbial ecology.

              Ruminant animals and ruminal microorganisms have a symbiotic relationship that facilitates fiber digestion, but domestic ruminants in developed countries are often fed an abundance of grain and little fiber. When ruminants are fed fiber-deficient rations, physiological mechanisms of homeostasis are disrupted, ruminal pH declines, microbial ecology is altered, and the animal becomes more susceptible to metabolic disorders and, in some cases, infectious disease. Some disorders can be counteracted by feed additives (for example, antibiotics and buffers), but these additives can alter the composition of the ruminal ecosystem even further.
                Bookmark

                Author and article information

                Contributors
                liujx@zju.edu.cn
                lguan@ualberta.ca
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                12 May 2020
                12 May 2020
                2020
                : 8
                : 64
                Affiliations
                [1 ]GRID grid.13402.34, ISNI 0000 0004 1759 700X, Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, , Zhejiang University, ; Hangzhou, 310058 China
                [2 ]GRID grid.17089.37, Department of Agricultural, Food and Nutritional Science, , University of Alberta, ; Edmonton, AB T6G 2P5 Canada
                Article
                819
                10.1186/s40168-020-00819-8
                7218573
                32398126
                dbbf79dc-cbcb-4287-b971-088a3459d0f3
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 17 October 2019
                : 2 March 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 31729004
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100010203, Agriculture Research System of China;
                Award ID: CARS-36
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                dairy cattle,milk protein yield,rumen metagenome,rumen metabolome,serum metabolome

                Comments

                Comment on this article