36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The complex vibrational spectrum of proline explained through the adiabatically switched semiclassical initial value representation

      1 , 1 , 1
      The Journal of Chemical Physics
      AIP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Proline, a 17-atom amino acid with a closed-ring side chain, has a complex potential energy surface characterized by several minima. Its IR experimental spectrum, reported in the literature, is of difficult and controversial assignment. In particular, the experimental signal at 3559 cm −1 associated with the OH stretch is interesting because it is inconsistent with the global minimum, trans-proline conformer. This suggests the possibility that multiple conformers may contribute to the IR spectrum. The same conclusion is obtained by investigating the splitting of the CO stretch at 1766 and 1789 cm −1 and other, more complex spectroscopic features involving CH stretches and COH/CNH bendings. In this work, we perform full-dimensional, on-the-fly adiabatically switched semiclassical initial value representation simulations employing the ab initio dft-d3-B3LYP level of theory with aug-cc-pVDZ basis set. We reconstruct the experimental spectrum of proline in its main features by studying the vibrational features of trans-proline and cis1-proline and provide a new assignment for the OH stretch of trans-proline.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu.

          The method of dispersion correction as an add-on to standard Kohn-Sham density functional theory (DFT-D) has been refined regarding higher accuracy, broader range of applicability, and less empiricism. The main new ingredients are atom-pairwise specific dispersion coefficients and cutoff radii that are both computed from first principles. The coefficients for new eighth-order dispersion terms are computed using established recursion relations. System (geometry) dependent information is used for the first time in a DFT-D type approach by employing the new concept of fractional coordination numbers (CN). They are used to interpolate between dispersion coefficients of atoms in different chemical environments. The method only requires adjustment of two global parameters for each density functional, is asymptotically exact for a gas of weakly interacting neutral atoms, and easily allows the computation of atomic forces. Three-body nonadditivity terms are considered. The method has been assessed on standard benchmark sets for inter- and intramolecular noncovalent interactions with a particular emphasis on a consistent description of light and heavy element systems. The mean absolute deviations for the S22 benchmark set of noncovalent interactions for 11 standard density functionals decrease by 15%-40% compared to the previous (already accurate) DFT-D version. Spectacular improvements are found for a tripeptide-folding model and all tested metallic systems. The rectification of the long-range behavior and the use of more accurate C(6) coefficients also lead to a much better description of large (infinite) systems as shown for graphene sheets and the adsorption of benzene on an Ag(111) surface. For graphene it is found that the inclusion of three-body terms substantially (by about 10%) weakens the interlayer binding. We propose the revised DFT-D method as a general tool for the computation of the dispersion energy in molecules and solids of any kind with DFT and related (low-cost) electronic structure methods for large systems.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The semiclassical way to molecular spectroscopy

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations

                Bookmark

                Author and article information

                Contributors
                Journal
                The Journal of Chemical Physics
                J. Chem. Phys.
                AIP Publishing
                0021-9606
                1089-7690
                April 28 2022
                April 28 2022
                : 156
                : 16
                : 164303
                Affiliations
                [1 ]Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
                Article
                10.1063/5.0089720
                35490010
                e30cc465-d073-4c80-b82f-2f5de728c4fd
                © 2022
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content78

                Cited by5

                Most referenced authors872