As soon as there was life, there was danger: the deep history of survival behaviours and the shallower history of consciousness – ScienceOpen
38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      As soon as there was life, there was danger: the deep history of survival behaviours and the shallower history of consciousness

      review-article
      Philosophical Transactions of the Royal Society B: Biological Sciences
      The Royal Society
      fear, consciousness, evolution, survival circuits

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is often said that fear is a universal innate emotion that we humans have inherited from our mammalian ancestors by virtue of having inherited conserved features of their nervous systems. Contrary to this common sense-based scientific point of view, I have argued that what we have inherited from our mammalian ancestors, and they from their distal vertebrate ancestors, and they from their chordate ancestors, and so forth, is not a fear circuit. It is, instead, a defensive survival circuit that detects threats, and in response, initiates defensive survival behaviours and supporting physiological adjustments. Seen in this light, the defensive survival circuits of humans and other mammals can be conceptualized as manifestations of an ancient survival function—the ability to detect danger and respond to it—that may in fact predate animals and their nervous systems, and perhaps may go back to the beginning of life. Fear, on the other hand, from my perspective, is a product of cortical cognitive circuits. This conception is not just of academic interest. It also has practical implications, offering clues as to why efforts to treat problems related to fear and anxiety are not more effective, and what might make them better.

          This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.

          Related collections

          Most cited references219

          • Record: found
          • Abstract: not found
          • Article: not found

          A circumplex model of affect.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emotion circuits in the brain.

            The field of neuroscience has, after a long period of looking the other way, again embraced emotion as an important research area. Much of the progress has come from studies of fear, and especially fear conditioning. This work has pinpointed the amygdala as an important component of the system involved in the acquisition, storage, and expression of fear memory and has elucidated in detail how stimuli enter, travel through, and exit the amygdala. Some progress has also been made in understanding the cellular and molecular mechanisms that underlie fear conditioning, and recent studies have also shown that the findings from experimental animals apply to the human brain. It is important to remember why this work on emotion succeeded where past efforts failed. It focused on a psychologically well-defined aspect of emotion, avoided vague and poorly defined concepts such as "affect," "hedonic tone," or "emotional feelings," and used a simple and straightforward experimental approach. With so much research being done in this area today, it is important that the mistakes of the past not be made again. It is also time to expand from this foundation into broader aspects of mind and behavior.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action.

              Recent behavioral studies in both humans and rodents have found evidence that performance in decision-making tasks depends on two different learning processes; one encoding the relationship between actions and their consequences and a second involving the formation of stimulus-response associations. These learning processes are thought to govern goal-directed and habitual actions, respectively, and have been found to depend on homologous corticostriatal networks in these species. Thus, recent research using comparable behavioral tasks in both humans and rats has implicated homologous regions of cortex (medial prefrontal cortex/medial orbital cortex in humans and prelimbic cortex in rats) and of dorsal striatum (anterior caudate in humans and dorsomedial striatum in rats) in goal-directed action and in the control of habitual actions (posterior lateral putamen in humans and dorsolateral striatum in rats). These learning processes have been argued to be antagonistic or competing because their control over performance appears to be all or none. Nevertheless, evidence has started to accumulate suggesting that they may at times compete and at others cooperate in the selection and subsequent evaluation of actions necessary for normal choice performance. It appears likely that cooperation or competition between these sources of action control depends not only on local interactions in dorsal striatum but also on the cortico-basal ganglia network within which the striatum is embedded and that mediates the integration of learning with basic motivational and emotional processes. The neural basis of the integration of learning and motivation in choice and decision-making is still controversial and we review some recent hypotheses relating to this issue.
                Bookmark

                Author and article information

                Contributors
                Journal
                Philos Trans R Soc Lond B Biol Sci
                Philos Trans R Soc Lond B Biol Sci
                RSTB
                royptb
                Philosophical Transactions of the Royal Society B: Biological Sciences
                The Royal Society
                0962-8436
                1471-2970
                February 14, 2022
                December 27, 2021
                December 27, 2021
                : 377
                : 1844 , Theme issue ‘Systems neuroscience through the lens of evolutionary theory’ compiled and edited by Paul Cisek and Benjamin Y. Hayden
                : 20210292
                Affiliations
                Center for Neural Science, New York University, , New York, NY 10003, USA
                Author notes

                One contribution of 16 to a theme issue ‘ Systems neuroscience through the lens of evolutionary theory’.

                Author information
                http://orcid.org/0000-0001-8518-132X
                Article
                rstb20210292
                10.1098/rstb.2021.0292
                8710881
                34957848
                e2d40e61-658a-4585-b9b2-2793621b6c72
                © 2021 The Authors.

                Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.

                History
                : August 31, 2021
                : October 18, 2021
                Categories
                1001
                42
                Articles
                Opinion Piece
                Custom metadata
                February 14, 2022

                Philosophy of science
                fear,consciousness,evolution,survival circuits
                Philosophy of science
                fear, consciousness, evolution, survival circuits

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content39

                Cited by24

                Most referenced authors1,048