Polarization sensitive optical coherence tomography (PS-OCT) provides depth resolved measurements of the polarization state of light reflected from turbid media such as tissue. The theory and calculation of the Stokes vector of light reflected from turbid media is described and application of PS-OCT to contemporary biomedical imaging problems is given. Measurement of the depth resolved Stokes parameters allows determination of the degree of polarization and optical axis orientation in turbid media that can be modeled as a linear retarder. Effect of multiple scattering and speckle on the accuracy and noise of the computed Stokes parameters is discussed. Future directions for development of PS-OCT instrumentation for biological and medical applications is given.