15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NButGT Reinforces the Beneficial Effects of Epinephrine on Cardiac Mitochondrial Respiration, Lactatemia and Cardiac Output in Experimental Anaphylactic Shock

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anaphylactic shock (AS) is the most severe form of acute systemic hypersensitivity reaction. Although epinephrine can restore patients’ hemodynamics, it might also be harmful, supporting the need for adjuvant treatment. We therefore investigated whether NButGT, enhancing O-GlcNAcylation and showing beneficial effects in acute heart failure might improve AS therapy. Ovalbumin-sensitized rats were randomly allocated to six groups: control (CON), shock (AS), shock treated with NButGT alone before (AS+pre-Nbut) or after (AS+post-Nbut) AS onset, shock treated with epinephrine alone (AS+EPI) and shock group treated with combination of epinephrine and NButGT (AS+EPI+preNBut). Induction of shock was performed with an intravenous (IV) ovalbumin. Cardiac protein and cycling enzymes O-GlcNAcylation levels, mean arterial pressure (MAP), heart rate, cardiac output (CO), left ventricle shortening fraction (LVSF), mitochondrial respiration, and lactatemia were evaluated using Western blotting experiments, invasive arterial monitoring, echocardiography, mitochondrial oximetry and arterial blood samples. AS decreased MAP (−77%, p < 0.001), CO (−90%, p < 0.001) and LVSF (−30%, p < 0.05). Epinephrine improved these parameters and, in particular, rats did not die in 15 min. But, cardiac mitochondrial respiration remained impaired (complexes I + II −29%, p < 0.05 and II −40%, p < 0.001) with hyperlactatemia. NButGT pretreatment (AS+pre-Nbut) efficiently increased cardiac O-GlcNAcylation level as compared to the AS+post-Nbut group. Compared to epinephrine alone, the adjunction of NButGT significantly improved CO, LVSF and mitochondrial respiration. MAP was not significantly increased but lactatemia decreased more markedly. Pretreatment with NButGT increases O-GlcNAcylation of cardiac proteins and has an additive effect on epinephrine, improving cardiac output and mitochondrial respiration and decreasing blood lactate levels. This new therapy might be useful when the risk of AS cannot be avoided.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock 2021

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Lactate as a fulcrum of metabolism

            Mistakenly thought to be the consequence of oxygen lack in contracting skeletal muscle we now know that the L-enantiomer of the lactate anion is formed under fully aerobic conditions and is utilized continuously in diverse cells, tissues, organs and at the whole-body level. By shuttling between producer (driver) and consumer (recipient) cells lactate fulfills at least three purposes: 1] a major energy source for mitochondrial respiration; 2] the major gluconeogenic precursor; and 3] a signaling molecule. Working by mass action, cell redox regulation, allosteric binding, and reprogramming of chromatin by lactylation of lysine residues on histones, lactate has major influences in energy substrate partitioning. The physiological range of tissue [lactate] is 0.5–20 mM and the cellular Lactate/Pyruvate ratio (L/P) can range from 10 to >500; these changes during exercise and other stress-strain responses dwarf other metabolic signals in magnitude and span. Hence, lactate dynamics have rapid and major short- and long-term effects on cell redox and other control systems. By inhibiting lipolysis in adipose via HCAR-1, and muscle mitochondrial fatty acid uptake via malonyl-CoA and CPT1, lactate controls energy substrate partitioning. Repeated lactate exposure from regular exercise results in major effects on the expression of regulatory enzymes of glycolysis and mitochondrial respiration. Lactate is the fulcrum of metabolic regulation in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The pathophysiology of anaphylaxis

              Anaphylaxis is a severe, systemic hypersensitivity reaction that is rapid in onset and characterized by life-threatening airway, breathing, and/or circulatory problems, and that is usually associated with skin and mucosal changes. Because it can be triggered in some people by minute amounts of antigen (e.g. certain foods or single insect stings), anaphylaxis can be considered the most aberrant example of an imbalance between the cost and benefit of an immune response. This review will describe current understanding of the immunopathogenesis and pathophysiology of anaphylaxis, focusing on the roles of IgE and IgG antibodies, immune effector cells, and mediators thought to contribute to examples of the disorder. Evidence from studies of anaphylaxis in humans will be discussed, as well as insights gained from analyses of animal models, including mice genetically deficient in the antibodies, antibody receptors, effector cells, or mediators implicated in anaphylaxis, and mice which have been “humanized” for some of these elements. We also will review possible host factors which may influence the occurrence or severity of anaphylaxis. Finally, we will speculate about anaphylaxis from an evolutionary perspective, and argue that, in the context of severe envenomation by arthropods or reptiles, anaphylaxis may even provide a survival advantage.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJMCFK
                International Journal of Molecular Sciences
                IJMS
                MDPI AG
                1422-0067
                March 2024
                March 14 2024
                : 25
                : 6
                : 3316
                Article
                10.3390/ijms25063316
                38542290
                de4cf08f-65ff-4484-bb82-c773191543b2
                © 2024

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article