11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cat Flea (Ctenocephalides felis) Immune Deficiency Signaling Pathway Regulates Rickettsia typhi Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Rickettsia species are obligate intracellular bacteria with both conserved and lineage-specific strategies for invading and surviving within eukaryotic cells. One variable component of Rickettsia biology involves arthropod vectors: for instance, typhus group rickettsiae are principally vectored by insects (i.e., lice and fleas), whereas spotted fever group rickettsiae are exclusively vectored by ticks. For flea-borne Rickettsia typhi, the etiological agent of murine typhus, research on vertebrate host biology is facilitated using cell lines and animal models. However, due to the lack of any stable flea cell line or a published flea genome sequence, little is known regarding R. typhi biology in flea vectors that, importantly, do not suffer lethality due to R. typhi infection. To address if fleas combat rickettsial infection, we characterized the cat flea ( Ctenocephalides felis) innate immune response to R. typhi. Initially, we determined that R. typhi infects Drosophila cells and increases antimicrobial peptide (AMP) gene expression, indicating immune pathway activation. While bioinformatics analysis of the C. felis transcriptome identified homologs to all of the Drosophila immune deficiency (IMD) and Toll pathway components, an AMP gene expression profile in Drosophila cells indicated IMD pathway activation upon rickettsial infection. Accordingly, we assessed R. typhi-mediated flea IMD pathway activation in vivo using small interfering RNA (siRNA)-mediated knockdown. Knockdown of Relish and Imd increased R. typhi infection levels, implicating the IMD pathway as a critical regulator of R. typhi burden in C. felis. These data suggest that targeting the IMD pathway could minimize the spread of R. typhi, and potentially other human pathogens, vectored by fleas.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SMART: recent updates, new developments and status in 2015

          SMART (Simple Modular Architecture Research Tool) is a web resource (http://smart.embl.de/) providing simple identification and extensive annotation of protein domains and the exploration of protein domain architectures. In the current version, SMART contains manually curated models for more than 1200 protein domains, with ∼200 new models since our last update article. The underlying protein databases were synchronized with UniProt, Ensembl and STRING, bringing the total number of annotated domains and other protein features above 100 million. SMART's ‘Genomic’ mode, which annotates proteins from completely sequenced genomes was greatly expanded and now includes 2031 species, compared to 1133 in the previous release. SMART analysis results pages have been completely redesigned and include links to several new information sources. A new, vector-based display engine has been developed for protein schematics in SMART, which can also be exported as high-resolution bitmap images for easy inclusion into other documents. Taxonomic tree displays in SMART have been significantly improved, and can be easily navigated using the integrated search engine.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Drosophila imd signaling pathway.

            The fruit fly, Drosophila melanogaster, has helped us to understand how innate immunity is activated. In addition to the Toll receptor and the Toll signaling pathway, the Drosophila immune response is regulated by another evolutionarily conserved signaling cascade, the immune deficiency (Imd) pathway, which activates NF-κB. In fact, the Imd pathway controls the expression of most of the antimicrobial peptides in Drosophila; thus, it is indispensable for normal immunity in flies. In this article, we review the current literature on the Drosophila Imd pathway, with special emphasis on its role in the (patho)physiology of different organs. We discuss the systemic response, as well as local responses, in the epithelial and mucosal surfaces and the nervous system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein.

              The antimicrobial defence of Drosophila relies largely on the challenge-induced synthesis of an array of potent antimicrobial peptides by the fat body. The defence against Gram-positive bacteria and natural fungal infections is mediated by the Toll signalling pathway, whereas defence against Gram-negative bacteria is dependent on the Immune deficiency (IMD) pathway. Loss-of-function mutations in either pathway reduce the resistance to corresponding infections. The link between microbial infections and activation of these two pathways has remained elusive. The Toll pathway is activated by Gram-positive bacteria through a circulating Peptidoglycan recognition protein (PGRP-SA). PGRPs appear to be highly conserved from insects to mammals, and the Drosophila genome contains 13 members. Here we report a mutation in a gene coding for a putative transmembrane protein, PGRP-LC, which reduces survival to Gram-negative sepsis but has no effect on the response to Gram-positive bacteria or natural fungal infections. By genetic epistasis, we demonstrate that PGRP-LC acts upstream of the imd gene. The data on PGRP-SA with respect to the response to Gram-positive infections, together with the present report, indicate that the PGRP family has a principal role in sensing microbial infections in Drosophila.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                Infect Immun
                Infect. Immun
                iai
                iai
                IAI
                Infection and Immunity
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0019-9567
                1098-5522
                30 October 2017
                19 December 2017
                January 2018
                19 December 2017
                : 86
                : 1
                : e00562-17
                Affiliations
                [a ]Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
                [b ]Department of Biology, West Virginia University, Morgantown, West Virginia, USA
                Yale University School of Medicine
                Author notes
                Address correspondence to Abdu F. Azad, aazad@ 123456som.umaryland.edu .
                [*]

                Present address: Kristen E. Rennoll-Bankert, Becton Dickinson, Sparks, Maryland, USA.

                Citation Rennoll SA, Rennoll-Bankert KE, Guillotte ML, Lehman SS, Driscoll TP, Beier-Sexton M, Rahman MS, Gillespie JJ, Azad AF. 2018. The cat flea ( Ctenocephalides felis) immune deficiency signaling pathway regulates Rickettsia typhi infection. Infect Immun 86:e00562-17. https://doi.org/10.1128/IAI.00562-17.

                Article
                00562-17
                10.1128/IAI.00562-17
                5736803
                29084898
                dd3f998d-e854-43cf-b5f9-c94d01546cec
                Copyright © 2017 Rennoll et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

                History
                : 4 August 2017
                : 28 August 2017
                : 16 October 2017
                Page count
                supplementary-material: 1, Figures: 5, Tables: 0, Equations: 0, References: 54, Pages: 11, Words: 7352
                Funding
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R01AI017828
                Award ID: R01AI126853
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R21AI26108
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: R21AI26108
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: T32AI095190
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: T32AI095190
                Award Recipient :
                Funded by: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID), https://doi.org/10.13039/100000060;
                Award ID: T32AI007540
                Award Recipient :
                Categories
                Host Response and Inflammation
                Custom metadata
                January 2018

                Infectious disease & Microbiology
                ctenocephalides felis,imd,rickettsia typhi,flea,innate immunity,vector biology

                Comments

                Comment on this article