40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ethanolamine Signaling Promotes Salmonella Niche Recognition and Adaptation during Infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemical and nutrient signaling are fundamental for all cellular processes, including interactions between the mammalian host and the microbiota, which have a significant impact on health and disease. Ethanolamine is an essential component of cell membranes and has profound signaling activity within mammalian cells by modulating inflammatory responses and intestinal physiology. Here, we describe a virulence-regulating pathway in which the foodborne pathogen Salmonella enterica serovar Typhimurium ( S. Typhimurium) exploits ethanolamine signaling to recognize and adapt to distinct niches within the host. The bacterial transcription factor EutR promotes ethanolamine metabolism in the intestine, which enables S. Typhimurium to establish infection. Subsequently, EutR directly activates expression of the Salmonella pathogenicity island 2 in the intramacrophage environment, and thus augments intramacrophage survival. Moreover, EutR is critical for robust dissemination during mammalian infection. Our findings reveal that S. Typhimurium co-opts ethanolamine as a signal to coordinate metabolism and then virulence. Because the ability to sense ethanolamine is a conserved trait among pathogenic and commensal bacteria, our work indicates that ethanolamine signaling may be a key step in the localized adaptation of bacteria within their mammalian hosts.

          Author Summary

          Chemical signaling underlies all cellular processes. Bacteria rely on chemical signaling to gain information about the local environment and precisely regulate gene expression. Ethanolamine is an abundant molecule within mammalian hosts that plays an important role in mammalian physiology and also serves as a carbon and nitrogen source for bacteria. Here we show that the foodborne pathogen Salmonella enterica exploits ethanolamine as a signal of distinct host environments to coordinate metabolism and virulence, which enhances disease progression during infection. The ability to sense ethanolamine is conserved in diverse bacteria; thus, these studies reveal that ethanolamine signaling may be important for bacterial adaptation to the mammalian host.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Gut inflammation provides a respiratory electron acceptor for Salmonella

          Salmonella enterica serotype Typhimurium (S. Typhimurium) causes acute gut inflammation by using its virulence factors to invade the intestinal epithelium and survive in mucosal macrophages. The inflammatory response enhances the transmission success of S. Typhimurium by promoting its outgrowth in the gut lumen through unknown mechanisms. Here we show that reactive oxygen species generated during inflammation reacted with endogenous, luminal sulphur compounds (thiosulfate) to form a new respiratory electron acceptor, tetrathionate. The genes conferring the ability to utilize tetrathionate as an electron acceptor produced a growth advantage for S. Typhimurium over the competing microbiota in the lumen of the inflamed gut. We conclude that S. Typhimurium virulence factors induce host-driven production of a new electron acceptor that allows the pathogen to use respiration to compete with fermenting gut microbes. Thus, the ability to trigger intestinal inflammation is crucial for the biology of this diarrhoeal pathogen.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota.

              Conventional wisdom holds that microbes support their growth in vertebrate hosts by exploiting a large variety of nutrients. We show here that use of a specific nutrient (ethanolamine) confers a marked growth advantage on Salmonella enterica serovar Typhimurium (S. Typhimurium) in the lumen of the inflamed intestine. In the anaerobic environment of the gut, ethanolamine supports little or no growth by fermentation. However, S. Typhimurium is able to use this carbon source by inducing the gut to produce a respiratory electron acceptor (tetrathionate), which supports anaerobic growth on ethanolamine. The gut normally converts ambient hydrogen sulfide to thiosulfate, which it then oxidizes further to tetrathionate during inflammation. Evidence is provided that S. Typhimurium's growth advantage in an inflamed gut is because of its ability to respire ethanolamine, which is released from host tissue, but is not utilizable by competing bacteria. By inducing intestinal inflammation, S. Typhimurium sidesteps nutritional competition and gains the ability to use an abundant simple substrate, ethanolamine, which is provided by the host.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                13 November 2015
                November 2015
                : 11
                : 11
                : e1005278
                Affiliations
                [1 ]Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
                [2 ]Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
                University of California Davis School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CJA MMK. Performed the experiments: CJA DEC. Analyzed the data: CJA DEC MMK. Contributed reagents/materials/analysis tools: CJA MA MMK. Wrote the paper: CJA MMK.

                [¤]

                Current address: Axon Connected, Axon Dx. Branch, Earlysville, Virginia, United States of America

                Article
                PPATHOGENS-D-15-01192
                10.1371/journal.ppat.1005278
                4643982
                26565973
                d3a602a0-ca04-4396-b085-132154128d38
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 21 May 2015
                : 22 October 2015
                Page count
                Figures: 8, Tables: 0, Pages: 20
                Funding
                This work was supported by the National Institutes of Health (5T32AI007046 to CJA). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article