Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimation of the transmission of foot-and-mouth disease virus from infected sheep to cattle

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The quantitative role of sheep in the transmission of foot-and-mouth disease virus (FMDV) is not well known. To estimate the role of sheep in the transmission of FMDV, a direct contact transmission experiment with 10 groups of animals each consisting of 2 infected lambs and 1 contact calf was performed. Secretions and excretions (oral swabs, blood, urine, faeces and probang samples) from all animals were tested for the presence of FMDV by virus isolation (VI) and/or RT-PCR. Serum was tested for the presence of antibodies against FMDV. To estimate FMDV transmission, the VI, RT-PCR and serology results were used. The partial reproduction ratio R 0 p i.e. the average number of new infections caused by one infected sheep introduced into a population of susceptible cattle, was estimated using either data of the whole infection chain of the experimental epidemics (the transient state method) or the final sizes of the experimental epidemics (the final size method). Using the transient state method, R 0 p was estimated as 1.0 (95% CI 0.2 - 6.0) using virus isolation results and 1.4 (95% CI 0.3 - 8.0) using RT-PCR results. Using the final size method, R 0 p was estimated as 0.9 (95% CI 0.2 - 3.0). Finally, R 0 p was compared to the R 0’s obtained in previous transmission studies with sheep or cattle only. This comparison showed that the infectivity of sheep is lower than that of cattle and that sheep and cattle are similarly susceptible to FMD. These results indicate that in a mixed population of sheep and cattle, sheep play a more limited role in the transmission of FMDV than cattle.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months.

          In February 2001, foot-and-mouth disease (FMD) was confirmed in Great Britain. A major epidemic developed, which peaked around 50 cases a day in late March, declining to under 10 a day by May. By mid-July, 1849 cases had been detected. The main control measures employed were livestock movement restrictions and the rapid slaughter of infected and exposed livestock. The first detected case was in south-east England; infection was traced to a farm in north-east England to which all other cases were linked. The epidemic was large as a result of a combination of events, including a delay in the diagnosis of the index case, the movement of infected sheep to market before FMD was first diagnosed, and the time of year. Virus was introduced at a time when there were many sheep movements around the country and weather conditions supported survival of the virus. The consequence was multiple, effectively primary, introductions of FMD virus into major sheep-keeping areas. Subsequent local spread from these introductions accounted for the majority of cases. The largest local epidemics were in areas with dense sheep populations and livestock dealers who were active during the key period. Most affected farms kept both sheep and cattle. At the time of writing the epidemic was still ongoing; however, this paper provides a basis for scientific discussion of the first five months.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Vaccination against foot-and-mouth disease I: epidemiological consequences.

            An epidemic of foot-and-mouth disease (FMD) can have devastating effects on animal welfare, economic revenues, the export position and society as a whole, as occurred during the 2001 FMD epidemic in the Netherlands. Following the preemptive culling of 260,000 animals during this outbreak, the Dutch government adopted emergency vaccination as preferred control policy. However, a vaccination-to-live strategy has not been applied before, posing unprecedented challenges for effectively controlling the epidemic, regaining FMD-free status and minimizing economic losses. These three topics are covered in an interdisciplinary model analysis. In this first part we evaluate whether and how emergency vaccination can be effectively applied to control FMD epidemics in the Netherlands. For this purpose we develop a stochastic individual-based model that describes FMD virus transmission between animals and between herds, taking heterogeneity between host species (cattle, sheep and pigs) into account. Our results in a densely populated livestock area with >4 farms/km(2) show that emergency ring vaccination can halt the epidemic as rapidly as preemptive ring culling, while the total number of farms to be culled is reduced by a factor of four. To achieve this reduction a larger control radius around detected farms and a corresponding adequate vaccination capacity is needed. Although sufficient for the majority of simulated epidemics with a 2 km vaccination zone, the vaccination capacity available in the Netherlands can be exhausted by pig farms that are on average ten times larger than cattle herds. Excluding pig farms from vaccination slightly increases the epidemic, but more than halves the number of animals to be vaccinated. Hobby flocks - modelled as small-sized sheep flocks - do not play a significant role in propagating the epidemic, and need not be targeted during the control phase. In a more sparsely populated livestock area in the Netherlands with about 2 farms/km(2) the minimal control strategy of culling only detected farms seems sufficient to control an epidemic. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantification of within- and between-pen transmission of Foot-and-Mouth disease virus in pigs.

              Quantified transmission parameters of Foot-and-Mouth Disease Virus (FMDV) are needed for epidemic models used for control and surveillance. In this study, we quantified the within- and between-pen transmission of FMDV in groups of pigs by estimating the daily transmission rate beta, i.e. the number of secondary infections caused by one infectious pig during one day, using an SIR (susceptible-infectious-removed) model. Within-pen transmission was studied in four groups of ten pigs in which 5 infected and 5 susceptible pigs had direct contact; between-pen transmission was studied in one group of ten pigs in which 5 infected and 5 susceptible pigs had indirect contact. Daily results of virus isolation of oropharyngeal fluid were used to quantify the transmission rate beta, using Generalised Linear Modelling (GLM) and a maximum likelihood method. In addition, we estimated the expected time to infection of the first pig within a pen T(w) and in the indirect-contact pen T(b). The between-pen transmission rate beta(b) was estimated to be 0.59 (0.083-4.18) per day, which was significantly lower than the within-pen transmission rate beta(w) of 6.14 (3.75-10.06). T(w) was 1.6 h, and T(b) was 16 h. Our results show that the transmission rate is influenced by contact structure between pigs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Res
                Vet. Res
                Veterinary Research
                BioMed Central
                0928-4249
                1297-9716
                2014
                27 May 2014
                : 45
                : 1
                : 58
                Affiliations
                [1 ]Central Veterinary Institute (CVI), Wageningen UR, P.O. Box 65, 8200 AB, Lelystad, The Netherlands
                [2 ]Department Quantitative Veterinary Epidemiology, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
                Article
                1297-9716-45-58
                10.1186/1297-9716-45-58
                4058432
                24886222
                d1269ae6-b4e1-41f6-831d-be32f5e06ffe
                Copyright © 2014 Bravo de Rueda et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 December 2013
                : 30 April 2014
                Categories
                Research

                Veterinary medicine
                Veterinary medicine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content261

                Cited by12

                Most referenced authors239