110
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Arginase-1–Expressing Macrophages Suppress Th2 Cytokine–Driven Inflammation and Fibrosis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophage-specific expression of Arginase-1 is commonly believed to promote inflammation, fibrosis, and wound healing by enhancing L-proline, polyamine, and Th2 cytokine production. Here, however, we show that macrophage-specific Arg1 functions as an inhibitor of inflammation and fibrosis following infection with the Th2-inducing pathogen Schistosoma mansoni. Although susceptibility to infection was not affected by the conditional deletion of Arg1 in macrophages, Arg1 −/flox ;LysMcre mice died at an accelerated rate. The mortality was not due to acute Th1/NOS2-mediated hepatotoxicity or endotoxemia. Instead, granulomatous inflammation, liver fibrosis, and portal hypertension increased in infected Arg1 −/flox ;LysMcre mice. Similar findings were obtained with Arg1 flox/flox ;Tie2cre mice, which delete Arg1 in all macrophage populations. Production of Th2 cytokines increased in the infected Arg1 −/flox ;LysMcre mice, and unlike alternatively activated wild-type macrophages, Arg1 −/flox ;LysMcre macrophages failed to inhibit T cell proliferation in vitro, providing an underlying mechanism for the exacerbated Th2 pathology. The suppressive activity of Arg1-expressing macrophages was independent of IL-10 and TGF-β1. However, when exogenous L-arginine was provided, T cell proliferation was restored, suggesting that Arg1-expressing macrophages deplete arginine, which is required to sustain CD4 + T cell responses. These data identify Arg1 as the essential suppressive mediator of alternatively activated macrophages (AAM) and demonstrate that Arg1-expressing macrophages function as suppressors rather than inducers of Th2-dependent inflammation and fibrosis.

          Author Summary

          While the function of NOS2 in Th1-type immunity has been investigated extensively, the role of Arg1 in the regulation of Th2-type responses is unclear. Previously, we showed that proline production in AAMs is regulated by Arg1 activity. Because proline is essential for collagen synthesis in myofibroblasts, numerous studies have suggested that Arg1-expressing AAMs regulate wound healing and fibrosis. The development of fibrosis in schistosomiasis is dependent on Th2 cytokines, and mice deficient in IL-4/IL-13 fail to upregulate Arg1. Nevertheless, although Arg1 expression is associated with Th2-dependent fibrosis, the contribution of macrophage-specific Arg1 to the pathogenesis of fibrosis in schistosomiasis was unknown. The studies conducted here with two different strains of mice deficient in macrophage-associated Arg1 demonstrate unequivocally that Arg1-expressing macrophages exhibit both anti-inflammatory and anti-fibrotic activity during Th2-driven inflammatory responses. In schistosomiasis, fibrosis, portal hypertension, and variceal bleeding are the primary pathological changes that characterize the severe hepatosplenic form of the disease in humans. It is widely believed that people who fail to adequately activate immune suppressive mechanisms when chronically infected with S. mansoni are the individuals who ultimately develop severe disease. Our data identify Arg1-expressing macrophages as critical mediators of immune downmodulation in chronic schistosomiasis.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Conditional gene targeting in macrophages and granulocytes using LysMcre mice.

          Conditional mutagenesis in mice has recently been made possible through the combination of gene targeting techniques and site-directed mutagenesis, using the bacteriophage P1-derived Cre/loxP recombination system. The versatility of this approach depends on the availability of mouse mutants in which the recombinase Cre is expressed in the appropriate cell lineages or tissues. Here we report the generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus. In double mutant mice harboring both the LysMcre allele and one of two different loxP-flanked target genes tested, a deletion efficiency of 83-98% was determined in mature macrophages and near 100% in granulocytes. Partial deletion (16%) could be detected in CD11c+ splenic dendritic cells which are closely related to the monocyte/macrophage lineage. In contrast, no significant deletion was observed in tail DNA or purified T and B cells. Taken together, LysMcre mice allow for both specific and highly efficient Cre-mediated deletion of loxP-flanked target genes in myeloid cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fibrotic disease and the T(H)1/T(H)2 paradigm.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases.

              Fibroproliferative diseases, including the pulmonary fibroses, systemic sclerosis, liver cirrhosis, cardiovascular disease, progressive kidney disease, and macular degeneration, are a leading cause of morbidity and mortality and can affect all tissues and organ systems. Fibrotic tissue remodeling can also influence cancer metastasis and accelerate chronic graft rejection in transplant recipients. Nevertheless, despite its enormous impact on human health, there are currently no approved treatments that directly target the mechanism(s) of fibrosis. The primary goals of this Review series on fibrotic diseases are to discuss some of the major fibroproliferative diseases and to identify the common and unique mechanisms of fibrogenesis that might be exploited in the development of effective antifibrotic therapies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                April 2009
                April 2009
                10 April 2009
                : 5
                : 4
                : e1000371
                Affiliations
                [1 ]Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
                [3 ]Biomedical Research Institute, Rockville, Maryland, United States of America
                Case Western Reserve University, United States of America
                Author notes
                [¤]

                Current address: University of Colorado and Health Sciences Center, Denver, Colorado, United States of America

                Conceived and designed the experiments: JTP TR KCEK AMS PJM TAW. Performed the experiments: JTP TR MMMK MSW RWT AWC. Analyzed the data: JTP TR KCEK AMS RWT AWC PJM TAW. Contributed reagents/materials/analysis tools: KCEK AMS PJM. Wrote the paper: JTP TR PJM TAW.

                Article
                08-PLPA-RA-1673R2
                10.1371/journal.ppat.1000371
                2660425
                19360123
                d0a9d33f-09c2-44dd-9da7-5fa6bce8226d
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 29 December 2008
                : 9 March 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Immunology/Immune Response

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article