12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review

      , , , ,
      Polymers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of chemical and physical methods. Various biological resources such as plants and their different parts, bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological resources have been reported. Plant extract contains various biomolecules, including flavonoids, terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents during the biosynthesis process. Similarly, microorganisms produce different primary and secondary metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized AgNPs have gained significant attention from the researchers because of their potential applications in different fields of biomedical science. The widest application of AgNPs is their bactericidal activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous human pathogens. Because of their small size and large surface area, AgNPs have the ability to easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and interfere with DNA replication as well as protein synthesis, and result in cell death. This paper provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms.

          Related collections

          Most cited references162

          • Record: found
          • Abstract: found
          • Article: not found

          Silver nanoparticles as a new generation of antimicrobials.

          Silver has been in use since time immemorial in the form of metallic silver, silver nitrate, silver sulfadiazine for the treatment of burns, wounds and several bacterial infections. But due to the emergence of several antibiotics the use of these silver compounds has been declined remarkably. Nanotechnology is gaining tremendous impetus in the present century due to its capability of modulating metals into their nanosize, which drastically changes the chemical, physical and optical properties of metals. Metallic silver in the form of silver nanoparticles has made a remarkable comeback as a potential antimicrobial agent. The use of silver nanoparticles is also important, as several pathogenic bacteria have developed resistance against various antibiotics. Hence, silver nanoparticles have emerged up with diverse medical applications ranging from silver based dressings, silver coated medicinal devices, such as nanogels, nanolotions, etc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antimicrobial effects of silver nanoparticles.

            The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of Ag nanoparticles on microorganisms and antimicrobial mechanism have not been revealed clearly. Stable Ag nanoparticles were prepared and their shape and size distribution characterized by particle characterizer and transmission electron microscopic study. The antimicrobial activity of Ag nanoparticles was investigated against yeast, Escherichia coli, and Staphylococcus aureus. In these tests, Muller Hinton agar plates were used and Ag nanoparticles of various concentrations were supplemented in liquid systems. As results, yeast and E. coli were inhibited at the low concentration of Ag nanoparticles, whereas the growth-inhibitory effects on S. aureus were mild. The free-radical generation effect of Ag nanoparticles on microbial growth inhibition was investigated by electron spin resonance spectroscopy. These results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biological Synthesis of Nanoparticles from Plants and Microorganisms.

              Nanotechnology has become one of the most promising technologies applied in all areas of science. Metal nanoparticles produced by nanotechnology have received global attention due to their extensive applications in the biomedical and physiochemical fields. Recently, synthesizing metal nanoparticles using microorganisms and plants has been extensively studied and has been recognized as a green and efficient way for further exploiting microorganisms as convenient nanofactories. Here, we explore and detail the potential uses of various biological sources for nanoparticle synthesis and the application of those nanoparticles. Furthermore, we highlight recent milestones achieved for the biogenic synthesis of nanoparticles by controlling critical parameters, including the choice of biological source, incubation period, pH, and temperature.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                POLYCK
                Polymers
                Polymers
                MDPI AG
                2073-4360
                February 2022
                February 15 2022
                : 14
                : 4
                : 742
                Article
                10.3390/polym14040742
                35215655
                d08803fd-5242-4cce-ad5b-eac325aa09ae
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article