Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cardiomyopathy in obesity, insulin resistance and diabetes

      1 , 1
      The Journal of Physiology
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myocardial fatty acid metabolism in health and disease.

            There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Understanding the diversity of membrane lipid composition

                Bookmark

                Author and article information

                Journal
                The Journal of Physiology
                J Physiol
                Wiley
                0022-3751
                1469-7793
                July 2020
                April 03 2019
                July 2020
                : 598
                : 14
                : 2977-2993
                Affiliations
                [1 ]Department of Cell Biology and Molecular MedicineCardiovascular Research Institute Rutgers New Jersey Medical School, 185 South Orange Ave Newark NJ 07103 USA
                Article
                10.1113/JP276747
                30869158
                cbaf14a5-a647-479a-ada8-18603e5ad06e
                © 2020

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article