11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromatin accessibility established by Pou5f3, Sox19b and Nanog primes genes for activity during zebrafish genome activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In many organisms, early embryonic development is driven by maternally provided factors until the controlled onset of transcription during zygotic genome activation. The regulation of chromatin accessibility and its relationship to gene activity during this transition remain poorly understood. Here, we generated chromatin accessibility maps with ATAC-seq from genome activation until the onset of lineage specification. During this period, chromatin accessibility increases at regulatory elements. This increase is independent of RNA polymerase II-mediated transcription, with the exception of the hypertranscribed miR-430 locus. Instead, accessibility often precedes the transcription of associated genes. Loss of the maternal transcription factors Pou5f3, Sox19b, and Nanog, which are known to be required for zebrafish genome activation, results in decreased accessibility at regulatory elements. Importantly, the accessibility of regulatory regions, especially when established by Pou5f3, Sox19b and Nanog, is predictive for future transcription. Our results show that the maternally provided transcription factors Pou5f3, Sox19b, and Nanog open up chromatin and prime genes for activity during zygotic genome activation in zebrafish.

          Author summary

          In eukaryotes, DNA is packed inside the cell nucleus in the form of chromatin, which consists of DNA, proteins such as histones, and RNA. Chromatin accessibility influences when and where DNA-binding proteins such as transcription factors and RNA polymerase II find their targets in order to activate transcription. It is unclear, however, whether the accessibility of regulatory regions precedes and predicts future transcription. To address these questions, we took advantage of ATAC-seq, which is a powerful technique to probe chromatin accessibility states. We analyzed zebrafish embryos as they gear up to start transcription for the first time and related the accessibility of regulatory regions to the activity of associated genes. This revealed that chromatin at regulatory regions is often accessible prior to gene activity and that this has predictive value for future transcription. Analyzing transcription factor mutants, we further determined that Pou5f3, Sox19b and Nanog play an important role in opening up chromatin. Thus, our study shows that transcription factors open regulatory elements to prime gene activity during development.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system.

          A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic compensation triggered by mutant mRNA degradation

            Genetic robustness, or the ability of an organism to maintain fitness in the presence of mutations, can be achieved via protein feedback loops. Recent evidence suggests that organisms may also respond to mutations by upregulating related gene(s) independently of protein feedback loops, a phenomenon called transcriptional adaptation. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analyzing several models of transcriptional adaptation in zebrafish and mouse, we show a requirement for mRNA degradation. Alleles that fail to transcribe the mutated gene do not display transcriptional adaptation and exhibit more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene’s mRNA, suggesting a sequence dependent mechanism. Besides implications for our understanding of disease-causing mutations, these findings will help design mutant alleles with minimal transcriptional adaptation-derived compensation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis.

              Long noncoding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in humans and the mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during vertebrate embryogenesis has been elusive. To identify lncRNAs with potential functions in vertebrate embryogenesis, we performed a time-series of RNA-seq experiments at eight stages during early zebrafish development. We reconstructed 56,535 high-confidence transcripts in 28,912 loci, recovering the vast majority of expressed RefSeq transcripts while identifying thousands of novel isoforms and expressed loci. We defined a stringent set of 1133 noncoding multi-exonic transcripts expressed during embryogenesis. These include long intergenic ncRNAs (lincRNAs), intronic overlapping lncRNAs, exonic antisense overlapping lncRNAs, and precursors for small RNAs (sRNAs). Zebrafish lncRNAs share many of the characteristics of their mammalian counterparts: relatively short length, low exon number, low expression, and conservation levels comparable to that of introns. Subsets of lncRNAs carry chromatin signatures characteristic of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than are protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first systematic identification of lncRNAs in a vertebrate embryo and forms the foundation for future genetic, genomic, and evolutionary studies.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: InvestigationRole: MethodologyRole: ResourcesRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ResourcesRole: SoftwareRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Funding acquisitionRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                15 January 2020
                January 2020
                : 16
                : 1
                : e1008546
                Affiliations
                [1 ] Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
                [2 ] Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
                [3 ] Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
                University of Oxford, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                ‡ These authors share first authorship on this work.

                Author information
                http://orcid.org/0000-0003-2532-9438
                http://orcid.org/0000-0001-6278-147X
                http://orcid.org/0000-0003-1840-6108
                http://orcid.org/0000-0001-8782-9775
                Article
                PGENETICS-D-19-00995
                10.1371/journal.pgen.1008546
                6986763
                31940339
                c94b18a5-b682-4db8-8a82-f9f8e3962d57
                © 2020 Pálfy et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 June 2019
                : 2 December 2019
                Page count
                Figures: 5, Tables: 0, Pages: 25
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100004412, Human Frontier Science Program;
                Award ID: CDA00060/2012
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100005416, Norges Forskningsråd;
                Award ID: 250049
                Award Recipient :
                This work was supported by the Max Planck Society ( https://www.mpg.de/en), a Human Frontier Science Program Career Development Award to NLV, CDA00060/2012 ( https://www.hfsp.org/), the Bergen Research Foundation to EV ( https://www.mohnfoundation.no/?lang=en) and the Norwegian Research Council to EV, #250049 ( https://www.forskningsradet.no/en/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Chromosome Biology
                Chromatin
                Biology and Life Sciences
                Genetics
                Epigenetics
                Chromatin
                Biology and Life Sciences
                Genetics
                Gene Expression
                Chromatin
                Biology and Life Sciences
                Developmental Biology
                Embryology
                Embryos
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Zebrafish
                Research and Analysis Methods
                Model Organisms
                Zebrafish
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Animal Models
                Zebrafish
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Fish
                Osteichthyes
                Zebrafish
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Transcription Factors
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Transcription Factors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Regulatory Proteins
                Transcription Factors
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Transcriptional Control
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Biology and Life Sciences
                Genetics
                Genomics
                Animal Genomics
                Mammalian Genomics
                Custom metadata
                vor-update-to-uncorrected-proof
                2020-01-28
                All raw and processed sequencing data generated in this study have been submitted to the NCBI Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE130944.

                Genetics
                Genetics

                Comments

                Comment on this article