16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanog-driven cell-reprogramming and self-renewal maintenance in Ptch1 +/− granule cell precursors after radiation injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medulloblastoma (MB) is the most common pediatric brain tumor, comprising four distinct molecular variants, one of which characterized by activation of the Sonic Hedgehog (SHH) pathway, driving 25–30% of sporadic MB. SHH-dependent MBs arise from granule cell precursors (GCPs), are fatal in 40–70% of cases and radioresistance strongly contributes to poor prognosis and tumor recurrence. Patched1 heterozygous ( Ptch1 +/−) mice, carrying a germ-line heterozygous inactivating mutation in the Ptch1 gene, the Shh receptor and negative regulator of the pathway, are uniquely susceptible to MB development after radiation damage in neonatal cerebellum. Here, we irradiated ex-vivo GCPs isolated from cerebella of neonatal WT and Ptch1 +/− mice. Our results highlight a less differentiated status of Ptch1-mutated cells after irradiation, influencing DNA damage response. Increased expression levels of pluripotency genes Nanog, Oct4 and Sal4, together with greater clonogenic potential, clearly suggest that radiation induces expansion of the stem-like cell compartment through cell-reprogramming and self-renewal maintenance, and that this mechanism is strongly dependent on Nanog. These results contribute to clarify the molecular mechanisms that control radiation-induced Shh-mediated tumorigenesis and may suggest Nanog as a potential target to inhibit for adjuvant radiotherapy in treatment of SHH-dependent MB.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells.

          Embryonic stem (ES) cells undergo extended proliferation while remaining poised for multilineage differentiation. A unique network of transcription factors may characterize self-renewal and simultaneously suppress differentiation. We applied expression cloning in mouse ES cells to isolate a self-renewal determinant. Nanog is a divergent homeodomain protein that directs propagation of undifferentiated ES cells. Nanog mRNA is present in pluripotent mouse and human cell lines, and absent from differentiated cells. In preimplantation embryos, Nanog is restricted to founder cells from which ES cells can be derived. Endogenous Nanog acts in parallel with cytokine stimulation of Stat3 to drive ES cell self-renewal. Elevated Nanog expression from transgene constructs is sufficient for clonal expansion of ES cells, bypassing Stat3 and maintaining Oct4 levels. Cytokine dependence, multilineage differentiation, and embryo colonization capacity are fully restored upon transgene excision. These findings establish a central role for Nanog in the transcription factor hierarchy that defines ES cell identity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity.

            Cancer stem cells are rare tumor cells characterized by their ability to self-renew and to induce tumorigenesis. They are present in gliomas and may be responsible for the lethality of these incurable brain tumors. In the most aggressive and invasive type, glioblastoma multiforme (GBM), an average of about one year spans the period between detection and death [1]. The resistence of gliomas to current therapies may be related to the existence of cancer stem cells [2-6]. We find that human gliomas display a stemness signature and demonstrate that HEDGEHOG (HH)-GLI signaling regulates the expression of stemness genes in and the self-renewal of CD133(+) glioma cancer stem cells. HH-GLI signaling is also required for sustained glioma growth and survival. It displays additive and synergistic effects with temozolomide (TMZ), the current chemotherapeutic agent of choice. TMZ, however, does not block glioma stem cell self-renewal. Finally, interference of HH-GLI signaling with cyclopamine or through lentiviral-mediated silencing demonstrates that the tumorigenicity of human gliomas in mice requires an active pathway. Our results reveal the essential role of HH-GLI signaling in controlling the behavior of human glioma cancer stem cells and offer new therapeutic possibilities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog.

              Cerebellar granule cells are the most abundant type of neuron in the brain, but the molecular mechanisms that control their generation are incompletely understood. We show that Sonic hedgehog (Shh), which is made by Purkinje cells, regulates the division of granule cell precursors (GCPs). Treatment of GCPs with Shh prevents differentiation and induces a potent, long-lasting proliferative response. This response can be inhibited by basic fibroblast growth factor or by activation of protein kinase A. Blocking Shh function in vivo dramatically reduces GCP proliferation. These findings provide insight into the mechanisms of normal growth and tumorigenesis in the cerebellum.
                Bookmark

                Author and article information

                Contributors
                anna.saran@enea.it
                mariateresa.mancuso@enea.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 October 2017
                27 October 2017
                2017
                : 7
                : 14238
                Affiliations
                [1 ]ISNI 0000 0000 9864 2490, GRID grid.5196.b, Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), ; Rome, Italy
                [2 ]ISNI 0000 0004 1762 5736, GRID grid.8982.b, Department of Physics, University of Pavia, ; Pavia, Italy
                [3 ]ISNI 0000 0004 1780 761X, GRID grid.440899.8, Department of Radiation Physics, Guglielmo Marconi University, ; Rome, Italy
                [4 ]ISNI 0000000121622106, GRID grid.8509.4, Department of Sciences, Roma Tre University, ; Rome, Italy
                Article
                14506
                10.1038/s41598-017-14506-6
                5660207
                29079783
                31cc41c8-50ee-4ebd-94ab-b4d790f83f4a
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 June 2017
                : 11 October 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article