22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Simultaneous Knockout of CXCR4 and CCR5 Genes in CD4+ T Cells via CRISPR/Cas9 Confers Resistance to Both X4- and R5-Tropic Human Immunodeficiency Virus Type 1 Infection

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous research has proven that disruption of either the CCR5 or the CXCR4 gene confers resistance to R5-tropic or X4-tropic human immunodeficiency virus type 1 (HIV-1) infection, respectively. However, the urgent need to ablate both of the co-receptors in individual post-thymic CD4+ T cells for dual protection remains. This study ablated the CCR5 and CXCR4 genes in human CD4+ cell lines and primary CD4+ T cells simultaneously using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a well-developed, highly efficient genetic engineering tool. The efficiency of gene modification is as high as 55% for CCR5 and 36% for CXCR4 in CD4+ cell lines through infection of a single lentiviral vector (LV-X4R5), which were markedly protected from both HIV-1NL4-3 (X4-using strain) and HIV-1YU-2 (R5-using strain) infection. Importantly, approximately 9% of the modified GHOST (3) CXCR4+CCR5+ cells harbor four bi-allelic gene disruptions in both the CXCR4 and CCR5 loci. Moreover, co-delivery of two single-guide RNAs loaded with Cas9: ribonucleoprotein (sgX4&R5 Cas9RNP) disrupted >12% of CCR5 and 10% of CXCR4 in primary human CD4+ T cells, which were rendered resistant to HIV-1NL4-3 and HIV-1YU-2 in vitro. Further, the modified cells do not show discernible mutagenesis in top-ranked off-target genes by the Surveyor assay and Sanger sequencing analysis. The results demonstrate the safety and efficacy of CRISPR/Cas9 in multiplex gene modification on peripherally circulating CD4+ T cells, which may promote a functional cure for HIV-1 infection.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of knock-in primary human T cells using Cas9 ribonucleoproteins.

          T-cell genome engineering holds great promise for cell-based therapies for cancer, HIV, primary immune deficiencies, and autoimmune diseases, but genetic manipulation of human T cells has been challenging. Improved tools are needed to efficiently "knock out" genes and "knock in" targeted genome modifications to modulate T-cell function and correct disease-associated mutations. CRISPR/Cas9 technology is facilitating genome engineering in many cell types, but in human T cells its efficiency has been limited and it has not yet proven useful for targeted nucleotide replacements. Here we report efficient genome engineering in human CD4(+) T cells using Cas9:single-guide RNA ribonucleoproteins (Cas9 RNPs). Cas9 RNPs allowed ablation of CXCR4, a coreceptor for HIV entry. Cas9 RNP electroporation caused up to ∼40% of cells to lose high-level cell-surface expression of CXCR4, and edited cells could be enriched by sorting based on low CXCR4 expression. Importantly, Cas9 RNPs paired with homology-directed repair template oligonucleotides generated a high frequency of targeted genome modifications in primary T cells. Targeted nucleotide replacement was achieved in CXCR4 and PD-1 (PDCD1), a regulator of T-cell exhaustion that is a validated target for tumor immunotherapy. Deep sequencing of a target site confirmed that Cas9 RNPs generated knock-in genome modifications with up to ∼20% efficiency, which accounted for up to approximately one-third of total editing events. These results establish Cas9 RNP technology for diverse experimental and therapeutic genome engineering applications in primary human T cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors.

            Over the past decade, lentiviral vectors have emerged as powerful tools for transgene delivery. The use of lentiviral vectors has become commonplace and applications in the fields of neuroscience, hematology, developmental biology, stem cell biology and transgenesis are rapidly emerging. Also, lentiviral vectors are at present being explored in the context of human clinical trials. Here we describe improved protocols to generate highly concentrated lentiviral vector pseudotypes involving different envelope glycoproteins. In this protocol, vector stocks are prepared by transient transfection using standard cell culture media or serum-free media. Such stocks are then concentrated by ultracentrifugation and/or ion exchange chromatography, or by precipitation using polyethylene glycol 6000, resulting in vector titers of up to 10(10) transducing units per milliliter and above. We also provide reliable real-time PCR protocols to titrate lentiviral vectors based on proviral DNA copies present in genomic DNA extracted from transduced cells or on vector RNA. These production/concentration methods result in high-titer vector preparations that show reduced toxicity compared with lentiviral vectors produced using standard protocols involving ultracentrifugation-based methods. The vector production and titration protocol described here can be completed within 8 d.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Change in Coreceptor Use Correlates with Disease Progression in HIV-1–Infected Individuals

              Recent studies have identified several coreceptors that are required for fusion and entry of Human Immunodeficiency Virus type 1 (HIV-1) into CD4+ cells. One of these receptors, CCR5, serves as a coreceptor for nonsyncytium inducing (NSI), macrophage-tropic strains of HIV-1, while another, fusin or CXCR-4, functions as a coreceptor for T cell line–adapted, syncytiuminducing (SI) strains. Using sequential primary isolates of HIV-1, we examined whether viruses using these coreceptors emerge in vivo and whether changes in coreceptor use are associated with disease progression. We found that isolates of HIV-1 from early in the course of infection predominantly used CCR5 for infection. However, in patients with disease progression, the virus expanded its coreceptor use to include CCR5, CCR3, CCR2b, and CXCR-4. Use of CXCR-4 as a coreceptor was only seen with primary viruses having an SI phenotype and was restricted by the env gene of the virus. The emergence of variants using this coreceptor was associated with a switch from NSI to SI phenotype, loss of sensitivity to chemokines, and decreasing CD4+ T cell counts. These results suggest that HIV-1 evolves during the course of infection to use an expanded range of coreceptors for infection, and that this adaptation is associated with progression to AIDS.
                Bookmark

                Author and article information

                Journal
                Human Gene Therapy
                Human Gene Therapy
                Mary Ann Liebert Inc
                1043-0342
                1557-7422
                January 2018
                January 2018
                : 29
                : 1
                : 51-67
                Article
                10.1089/hum.2017.032
                28599597
                c8a96918-160b-48f7-834b-276a0bcc06ae
                © 2018

                http://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article