18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene editing and CRISPR in the clinic: current and future perspectives

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genome editing technologies, particularly those based on zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspaced short palindromic repeat DNA sequences)/Cas9 are rapidly progressing into clinical trials. Most clinical use of CRISPR to date has focused on ex vivo gene editing of cells followed by their re-introduction back into the patient. The ex vivo editing approach is highly effective for many disease states, including cancers and sickle cell disease, but ideally genome editing would also be applied to diseases which require cell modification in vivo. However, in vivo use of CRISPR technologies can be confounded by problems such as off-target editing, inefficient or off-target delivery, and stimulation of counterproductive immune responses. Current research addressing these issues may provide new opportunities for use of CRISPR in the clinical space. In this review, we examine the current status and scientific basis of clinical trials featuring ZFNs, TALENs, and CRISPR-based genome editing, the known limitations of CRISPR use in humans, and the rapidly developing CRISPR engineering space that should lay the groundwork for further translation to clinical application.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers

          Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. This fusion protein catalyzes acetylation of histone H3 lysine 27 at its target sites, corresponding with robust transcriptional activation of target genes from promoters, proximal enhancers, and distal enhancers. Gene activation by the targeted acetyltransferase is highly specific across the genome. In contrast to conventional dCas9-based activators, the acetyltransferase effectively activates genes from enhancer regions and with individual guide RNAs. The core p300 domain is also portable to other programmable DNA-binding proteins. These results support targeted acetylation as a causal mechanism of transactivation and provide a new robust tool for manipulating gene regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            CRISPR–Cas9 Structures and Mechanisms

            Many bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) systems employ the dual RNA–guided DNA endonuclease Cas9 to defend against invading phages and conjugative plasmids by introducing site-specific double-stranded breaks in target DNA. Target recognition strictly requires the presence of a short protospacer adjacent motif (PAM) flanking the target site, and subsequent R-loop formation and strand scission are driven by complementary base pairing between the guide RNA and target DNA, Cas9–DNA interactions, and associated conformational changes. The use of CRISPR–Cas9 as an RNA-programmable DNA targeting and editing platform is simplified by a synthetic single-guide RNA (sgRNA) mimicking the natural dual trans-activating CRISPR RNA (tracrRNA)–CRISPR RNA (crRNA) structure. This review aims to provide an in-depth mechanistic and structural understanding of Cas9-mediated RNA-guided DNA targeting and cleavage. Molecular insights from biochemical and structural studies provide a framework for rational engineering aimed at altering catalytic function, guide RNA specificity, and PAM requirements and reducing off-target activity for the development of Cas9-based therapies against genetic diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Efficient Delivery of Genome-Editing Proteins In Vitro and In Vivo

              Efficient intracellular delivery of proteins is needed to fully realize the potential of protein therapeutics. Current methods of protein delivery commonly suffer from low tolerance for serum, poor endosomal escape, and limited in vivo efficacy. Here we report that common cationic lipid nucleic acid transfection reagents can potently deliver proteins that are fused to negatively supercharged proteins, that contain natural anionic domains, or that natively bind to anionic nucleic acids. This approach mediates the potent delivery of nM concentrations of Cre recombinase, TALE- and Cas9-based transcriptional activators, and Cas9:sgRNA nuclease complexes into cultured human cells in media containing 10% serum. Delivery of Cas9:sgRNA complexes resulted in up to 80% genome modification with substantially higher specificity compared to DNA transfection. This approach also mediated efficient delivery of Cre recombinase and Cas9:sgRNA complexes into the mouse inner ear in vivo, achieving 90% Cre-mediated recombination and 20% Cas9-mediated genome modification in hair cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biosci Rep
                Biosci. Rep
                bsr
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                30 April 2020
                09 April 2020
                : 40
                : 4
                : BSR20200127
                Affiliations
                [1 ]Systems Biology, Sandia National Laboratories, Livermore, CA 94551, U.S.A.
                [2 ]Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
                [3 ]Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, U.S.A.
                Author notes
                Correspondence: Kimberly S. Butler ( kimbutl@ 123456sandia.gov )
                Author information
                http://orcid.org/0000-0001-6045-8636
                Article
                BSR20200127
                10.1042/BSR20200127
                7146048
                32207531
                dfed80bf-6034-4aa4-8760-285fb2777c0b
                © 2020 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 15 January 2020
                : 23 March 2020
                : 23 March 2020
                : 24 March 2020
                Page count
                Pages: 37
                Categories
                Biotechnology
                Genomics
                Molecular Bases of Health & Disease
                Review Articles

                Life sciences
                clinical trial,crispr,gene activation,genome editing,transcription activator-like effector nucleases,zinc finger nuclease

                Comments

                Comment on this article