11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimation of disease burden and clinical severity of COVID-19 caused by Omicron BA.2 in Shanghai, February-June 2022

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          An outbreak of COVID-19 caused by the SARS-CoV-2 Omicron BA.2 sublineage occurred in Shanghai, China from February 26 to June 30, 2022. We use official reported data retrieved from Shanghai municipal Health Commissions to estimate the incidence of infections, severe/critical infections, and deaths to assess the disease burden. By adjusting for right censoring and RT-PCR sensitivity, we provide estimates of clinical severity, including the infection fatality ratio, symptomatic case fatality ratio, and risk of developing severe/critical disease upon infection. The overall infection rate, severe/critical infection rate, and mortality rate were 2.74 (95% CI: 2.73-2.74) per 100 individuals, 6.34 (95% CI: 6.02-6.66) per 100,000 individuals and 2.42 (95% CI: 2.23-2.62) per 100,000 individuals, respectively. The severe/critical infection rate and mortality rate increased with age, noted in individuals aged 80 years or older. The overall fatality ratio and risk of developing severe/critical disease upon infection were 0.09% (95% CI: 0.09-0.10%) and 0.27% (95% CI: 0.24-0.29%), respectively. Having received at least one vaccine dose led to a 10-fold reduction in the risk of death for infected individuals aged 80 years or older. Under the repeated population-based screenings and strict intervention policies implemented in Shanghai, our results found a lower disease burden and mortality of the outbreak compared to other settings and countries, showing the impact of the successful outbreak containment in Shanghai. The estimated low clinical severity of this Omicron BA.2 epidemic in Shanghai highlight the key contribution of vaccination and availability of hospital beds to reduce the risk of death.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis

          Background There is disagreement about the level of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We conducted a living systematic review and meta-analysis to address three questions: (1) Amongst people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? (2) Amongst people with SARS-CoV-2 infection who are asymptomatic when diagnosed, what proportion will develop symptoms later? (3) What proportion of SARS-CoV-2 transmission is accounted for by people who are either asymptomatic throughout infection or presymptomatic? Methods and findings We searched PubMed, Embase, bioRxiv, and medRxiv using a database of SARS-CoV-2 literature that is updated daily, on 25 March 2020, 20 April 2020, and 10 June 2020. Studies of people with SARS-CoV-2 diagnosed by reverse transcriptase PCR (RT-PCR) that documented follow-up and symptom status at the beginning and end of follow-up or modelling studies were included. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with an adapted checklist for case series, and the relevance and credibility of modelling studies were assessed using a published checklist. We included a total of 94 studies. The overall estimate of the proportion of people who become infected with SARS-CoV-2 and remain asymptomatic throughout infection was 20% (95% confidence interval [CI] 17–25) with a prediction interval of 3%–67% in 79 studies that addressed this review question. There was some evidence that biases in the selection of participants influence the estimate. In seven studies of defined populations screened for SARS-CoV-2 and then followed, 31% (95% CI 26%–37%, prediction interval 24%–38%) remained asymptomatic. The proportion of people that is presymptomatic could not be summarised, owing to heterogeneity. The secondary attack rate was lower in contacts of people with asymptomatic infection than those with symptomatic infection (relative risk 0.35, 95% CI 0.10–1.27). Modelling studies fit to data found a higher proportion of all SARS-CoV-2 infections resulting from transmission from presymptomatic individuals than from asymptomatic individuals. Limitations of the review include that most included studies were not designed to estimate the proportion of asymptomatic SARS-CoV-2 infections and were at risk of selection biases; we did not consider the possible impact of false negative RT-PCR results, which would underestimate the proportion of asymptomatic infections; and the database does not include all sources. Conclusions The findings of this living systematic review suggest that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of the infection. The contribution of presymptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention measures, with enhanced hand hygiene, masks, testing tracing, and isolation strategies and social distancing, will continue to be needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Clinical severity of, and effectiveness of mRNA vaccines against, covid-19 from omicron, delta, and alpha SARS-CoV-2 variants in the United States: prospective observational study

            Abstract Objectives To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. Design Case-control study. Setting 21 hospitals across the United States. Participants 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). Main outcome measures Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization’s clinical progression scale was compared among variants using proportional odds regression. Results Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). Conclusions mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Population Immunity and Covid-19 Severity with Omicron Variant in South Africa

              Background The B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified on November 25, 2021, in Gauteng province, South Africa. Data regarding the seroprevalence of SARS-CoV-2 IgG in Gauteng before the fourth wave of coronavirus disease 2019 (Covid-19), in which the omicron variant was dominant, are needed. Methods We conducted a seroepidemiologic survey from October 22 to December 9, 2021, in Gauteng to determine the seroprevalence of SARS-CoV-2 IgG. Households included in a previous seroepidemiologic survey (conducted from November 2020 to January 2021) were contacted; to account for changes in the survey population, there was a 10% increase in the households contacted, with the use of the same sampling framework. Dried-blood-spot samples were tested for IgG against SARS-CoV-2 spike protein and nucleocapsid protein with the use of quantitative assays. We also evaluated Covid-19 epidemiologic trends in Gauteng, including cases, hospitalizations, recorded deaths, and excess deaths from the start of the pandemic through January 12, 2022. Results Samples were obtained from 7010 participants, of whom 1319 (18.8%) had received a Covid-19 vaccine. The seroprevalence of SARS-CoV-2 IgG ranged from 56.2% (95% confidence interval [CI], 52.6 to 59.7) among children younger than 12 years of age to 79.7% (95% CI, 77.6 to 81.5) among adults older than 50 years of age. Vaccinated participants were more likely to be seropositive for SARS-CoV-2 than unvaccinated participants (93.1% vs. 68.4%). Epidemiologic data showed that the incidence of SARS-CoV-2 infection increased and subsequently declined more rapidly during the fourth wave than it had during the three previous waves. The incidence of infection was decoupled from the incidences of hospitalization, recorded death, and excess death during the fourth wave, as compared with the proportions seen during previous waves. Conclusions Widespread underlying SARS-CoV-2 seropositivity was observed in Gauteng before the omicron-dominant wave of Covid-19. Epidemiologic data showed a decoupling of hospitalizations and deaths from infections while omicron was circulating. (Funded by the Bill and Melinda Gates Foundation.)
                Bookmark

                Author and article information

                Journal
                Emerg Microbes Infect
                Emerg Microbes Infect
                Emerging Microbes & Infections
                Taylor & Francis
                2222-1751
                21 November 2022
                2022
                21 November 2022
                : 11
                : 1
                : 2800-2807
                Affiliations
                [a ]Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University , Shanghai, People’s Republic of China
                [b ]Key Laboratory of Public Health Safety, Ministry of Education, Fudan University , Shanghai, People’s Republic of China
                [c ]Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health , Bethesda, MD, USA
                [d ]Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health , Bloomington, IN, USA
                Author notes
                [CONTACT ] Hongjie Yu yhj@ 123456fudan.edu.cn Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University , Shanghai, People’s Republic of China; Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, People’s Republic of China

                Supplemental data for this article can be accessed online at https://doi.org/10.1080/22221751.2022.2128435.

                Article
                2128435
                10.1080/22221751.2022.2128435
                9683067
                36205530
                bf614d31-40da-4c0c-9a62-fdbdafdf7bfc
                © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 3, Tables: 0, Equations: 8, References: 26, Pages: 8
                Categories
                Coronaviruses
                Research Article

                omicron ba.2,covid-19,disease burden,clinical severity,shanghai

                Comments

                Comment on this article