82
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          There is disagreement about the level of asymptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We conducted a living systematic review and meta-analysis to address three questions: (1) Amongst people who become infected with SARS-CoV-2, what proportion does not experience symptoms at all during their infection? (2) Amongst people with SARS-CoV-2 infection who are asymptomatic when diagnosed, what proportion will develop symptoms later? (3) What proportion of SARS-CoV-2 transmission is accounted for by people who are either asymptomatic throughout infection or presymptomatic?

          Methods and findings

          We searched PubMed, Embase, bioRxiv, and medRxiv using a database of SARS-CoV-2 literature that is updated daily, on 25 March 2020, 20 April 2020, and 10 June 2020. Studies of people with SARS-CoV-2 diagnosed by reverse transcriptase PCR (RT-PCR) that documented follow-up and symptom status at the beginning and end of follow-up or modelling studies were included. One reviewer extracted data and a second verified the extraction, with disagreement resolved by discussion or a third reviewer. Risk of bias in empirical studies was assessed with an adapted checklist for case series, and the relevance and credibility of modelling studies were assessed using a published checklist. We included a total of 94 studies. The overall estimate of the proportion of people who become infected with SARS-CoV-2 and remain asymptomatic throughout infection was 20% (95% confidence interval [CI] 17–25) with a prediction interval of 3%–67% in 79 studies that addressed this review question. There was some evidence that biases in the selection of participants influence the estimate. In seven studies of defined populations screened for SARS-CoV-2 and then followed, 31% (95% CI 26%–37%, prediction interval 24%–38%) remained asymptomatic. The proportion of people that is presymptomatic could not be summarised, owing to heterogeneity. The secondary attack rate was lower in contacts of people with asymptomatic infection than those with symptomatic infection (relative risk 0.35, 95% CI 0.10–1.27). Modelling studies fit to data found a higher proportion of all SARS-CoV-2 infections resulting from transmission from presymptomatic individuals than from asymptomatic individuals. Limitations of the review include that most included studies were not designed to estimate the proportion of asymptomatic SARS-CoV-2 infections and were at risk of selection biases; we did not consider the possible impact of false negative RT-PCR results, which would underestimate the proportion of asymptomatic infections; and the database does not include all sources.

          Conclusions

          The findings of this living systematic review suggest that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of the infection. The contribution of presymptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention measures, with enhanced hand hygiene, masks, testing tracing, and isolation strategies and social distancing, will continue to be needed.

          Abstract

          Diana Buitrago-Garcia and co-workers present a systematic review and meta-analysis on asymptomatic SARS-CoV-2 infections.

          Author summary

          Why was this study done?
          • The proportion of people who will remain asymptomatic throughout the course of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease 2019 (COVID-19), is not known.

          • Studies that assess people at just one time point will overestimate the proportion of true asymptomatic infection because those who go on to develop COVID-19 symptoms will be wrongly classified as asymptomatic rather than presymptomatic.

          • The amount, and infectiousness, of asymptomatic SARS-CoV-2 infection will determine what kind of measures will prevent transmission most effectively.

          What did the researchers do and find?
          • We did a living systematic review through 10 June 2020, using automated workflows that speed up the review processes and allow the review to be updated when relevant new evidence becomes available.

          • Overall, in 79 studies in a range of different settings, 20% (95% confidence interval [CI] 17%–25%, prediction interval 3%–67%) of people with SARS-CoV-2 infection remained asymptomatic during follow-up, but biases in study designs limit the certainty of this estimate.

          • In seven studies of defined populations screened for SARS-CoV-2 and then followed, 31% (95% CI 26%–37%, prediction interval 24%–38%) remained asymptomatic.

          • We found some evidence that SARS-CoV-2 infection in contacts of people with asymptomatic infection is less likely than in contacts of people with symptomatic infection (relative risk 0.35, 95% CI 0.10–1.27).

          What do these findings mean?
          • The findings of this living systematic review suggest that most people who become infected with SARS-CoV-2 will not remain asymptomatic throughout the course of infection.

          • Future studies should be designed specifically to determine the true proportion of asymptomatic SARS-CoV-2 infections, using methods to minimise biases in the selection of study participants and ascertainment of symptom status during follow-up.

          • The contribution of presymptomatic and asymptomatic infections to overall SARS-CoV-2 transmission means that combination prevention measures, with enhanced hand hygiene, masks, testing tracing, and isolation strategies and social distancing, will continue to be needed.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

          Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients

            To the Editor: The 2019 novel coronavirus (SARS-CoV-2) epidemic, which was first reported in December 2019 in Wuhan, China, and has been declared a public health emergency of international concern by the World Health Organization, may progress to a pandemic associated with substantial morbidity and mortality. SARS-CoV-2 is genetically related to SARS-CoV, which caused a global epidemic with 8096 confirmed cases in more than 25 countries in 2002–2003. 1 The epidemic of SARS-CoV was successfully contained through public health interventions, including case detection and isolation. Transmission of SARS-CoV occurred mainly after days of illness 2 and was associated with modest viral loads in the respiratory tract early in the illness, with viral loads peaking approximately 10 days after symptom onset. 3 We monitored SARS-CoV-2 viral loads in upper respiratory specimens obtained from 18 patients (9 men and 9 women; median age, 59 years; range, 26 to 76) in Zhuhai, Guangdong, China, including 4 patients with secondary infections (1 of whom never had symptoms) within two family clusters (Table S1 in the Supplementary Appendix, available with the full text of this letter at NEJM.org). The patient who never had symptoms was a close contact of a patient with a known case and was therefore monitored. A total of 72 nasal swabs (sampled from the mid-turbinate and nasopharynx) (Figure 1A) and 72 throat swabs (Figure 1B) were analyzed, with 1 to 9 sequential samples obtained from each patient. Polyester flock swabs were used for all the patients. From January 7 through January 26, 2020, a total of 14 patients who had recently returned from Wuhan and had fever (≥37.3°C) received a diagnosis of Covid-19 (the illness caused by SARS-CoV-2) by means of reverse-transcriptase–polymerase-chain-reaction assay with primers and probes targeting the N and Orf1b genes of SARS-CoV-2; the assay was developed by the Chinese Center for Disease Control and Prevention. Samples were tested at the Guangdong Provincial Center for Disease Control and Prevention. Thirteen of 14 patients with imported cases had evidence of pneumonia on computed tomography (CT). None of them had visited the Huanan Seafood Wholesale Market in Wuhan within 14 days before symptom onset. Patients E, I, and P required admission to intensive care units, whereas the others had mild-to-moderate illness. Secondary infections were detected in close contacts of Patients E, I, and P. Patient E worked in Wuhan and visited his wife (Patient L), mother (Patient D), and a friend (Patient Z) in Zhuhai on January 17. Symptoms developed in Patients L and D on January 20 and January 22, respectively, with viral RNA detected in their nasal and throat swabs soon after symptom onset. Patient Z reported no clinical symptoms, but his nasal swabs (cycle threshold [Ct] values, 22 to 28) and throat swabs (Ct values, 30 to 32) tested positive on days 7, 10, and 11 after contact. A CT scan of Patient Z that was obtained on February 6 was unremarkable. Patients I and P lived in Wuhan and visited their daughter (Patient H) in Zhuhai on January 11 when their symptoms first developed. Fever developed in Patient H on January 17, with viral RNA detected in nasal and throat swabs on day 1 after symptom onset. We analyzed the viral load in nasal and throat swabs obtained from the 17 symptomatic patients in relation to day of onset of any symptoms (Figure 1C). Higher viral loads (inversely related to Ct value) were detected soon after symptom onset, with higher viral loads detected in the nose than in the throat. Our analysis suggests that the viral nucleic acid shedding pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza 4 and appears different from that seen in patients infected with SARS-CoV. 3 The viral load that was detected in the asymptomatic patient was similar to that in the symptomatic patients, which suggests the transmission potential of asymptomatic or minimally symptomatic patients. These findings are in concordance with reports that transmission may occur early in the course of infection 5 and suggest that case detection and isolation may require strategies different from those required for the control of SARS-CoV. How SARS-CoV-2 viral load correlates with culturable virus needs to be determined. Identification of patients with few or no symptoms and with modest levels of detectable viral RNA in the oropharynx for at least 5 days suggests that we need better data to determine transmission dynamics and inform our screening practices.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporal dynamics in viral shedding and transmissibility of COVID-19

              We report temporal patterns of viral shedding in 94 patients with laboratory-confirmed COVID-19 and modeled COVID-19 infectiousness profiles from a separate sample of 77 infector-infectee transmission pairs. We observed the highest viral load in throat swabs at the time of symptom onset, and inferred that infectiousness peaked on or before symptom onset. We estimated that 44% (95% confidence interval, 25-69%) of secondary cases were infected during the index cases' presymptomatic stage, in settings with substantial household clustering, active case finding and quarantine outside the home. Disease control measures should be adjusted to account for probable substantial presymptomatic transmission.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: MethodologyRole: Project administrationRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: MethodologyRole: Project administrationRole: ValidationRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: MethodologyRole: ValidationRole: Writing – review & editing
                Role: Data curationRole: ValidationRole: Writing – review & editing
                Role: Data curationRole: ValidationRole: Writing – review & editing
                Role: InvestigationRole: ValidationRole: Writing – review & editing
                Role: Formal analysisRole: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: MethodologyRole: SupervisionRole: ValidationRole: Writing – original draftRole: Writing – review & editing
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                plos
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, CA USA )
                1549-1277
                1549-1676
                22 September 2020
                September 2020
                : 17
                : 9
                : e1003346
                Affiliations
                [1 ] Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
                [2 ] Graduate School of Health Sciences, University of Bern, Bern, Switzerland
                World Health Organization, SWITZERLAND
                Author notes

                I have read the journal's policy and the authors of this manuscript have the following competing interests: GS has participated in two scientific meetings for Merck and Biogen. NL is a member of the PLOS Medicine editorial board.

                Author information
                http://orcid.org/0000-0001-9761-206X
                http://orcid.org/0000-0002-4725-0475
                http://orcid.org/0000-0003-1039-6873
                http://orcid.org/0000-0003-1600-5925
                http://orcid.org/0000-0002-0412-1649
                http://orcid.org/0000-0002-0260-9691
                http://orcid.org/0000-0002-3830-8508
                http://orcid.org/0000-0003-4817-8986
                Article
                PMEDICINE-D-20-02690
                10.1371/journal.pmed.1003346
                7508369
                32960881
                42e93485-c2eb-4084-87cb-ce3b45bd3aa8
                © 2020 Buitrago-Garcia et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 11 June 2020
                : 18 August 2020
                Page count
                Figures: 4, Tables: 2, Pages: 25
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001711, Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung;
                Award ID: 320030_176233
                Award Recipient :
                Funded by: European Union Horizon 2020 research and innovation programme
                Award ID: 101003688
                Award Recipient :
                Funded by: Swiss Government Excellence Scholarship
                Award ID: 2019.0774
                Award Recipient :
                Funded by: Swiss School of Public Health plus
                Award Recipient :
                Funding was received from the Swiss National Science Foundation (320030_176233, to NL), http://www.snf.ch/en/Pages/default.aspx; European Union Horizon 2020 research and innovation programme (101003688, to NL), https://ec.europa.eu/programmes/horizon2020/en; Swiss government excellence scholarship (2019.0774, to DB-G), https://www.sbfi.admin.ch/sbfi/en/home/education/scholarships-and-grants/swiss-government-excellence-scholarships.html; and the Swiss School of Public Health Global P3HS stipend (to DB-G), https://ssphplus.ch/en/globalp3hs/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Organisms
                Viruses
                RNA viruses
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Microbiology
                Medical microbiology
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and health sciences
                Pathology and laboratory medicine
                Pathogens
                Microbial pathogens
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Biology and life sciences
                Organisms
                Viruses
                Viral pathogens
                Coronaviruses
                SARS coronavirus
                SARS CoV 2
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Respiratory Infections
                Medicine and Health Sciences
                Medical Conditions
                Respiratory Disorders
                Respiratory Infections
                Medicine and Health Sciences
                Pulmonology
                Respiratory Disorders
                Respiratory Infections
                People and Places
                Geographical Locations
                Asia
                China
                Medicine and Health Sciences
                Medical Conditions
                Infectious Diseases
                Viral Diseases
                Covid 19
                Medicine and Health Sciences
                Epidemiology
                Medical Risk Factors
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Reverse Transcriptase-Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Reverse Transcriptase-Polymerase Chain Reaction
                Medicine and Health Sciences
                Diagnostic Medicine
                Virus Testing
                Research and Analysis Methods
                Database and Informatics Methods
                Database Searching
                Custom metadata
                The file listing all included studies and files used for all analyses are available from the Harvard Dataverse database. https://doi.org/10.7910/DVN/TZFXYO, Harvard Dataverse, V2, UNF:6:nblmY3m4rXPJ/oD2d9Lo5A== [fileUNF].
                COVID-19

                Medicine
                Medicine

                Comments

                Comment on this article