4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Photostable and printable fluorescence carbon quantum dots for advanced message encryption and specific reversible multiple sensing of Cu2+ and cysteine

      , , , , , , , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Carbon Dots: A New Type of Carbon-Based Nanomaterial with Wide Applications

          Carbon dots (CDs), as a new type of carbon-based nanomaterial, have attracted broad research interest for years, because of their diverse physicochemical properties and favorable attributes like good biocompatibility, unique optical properties, low cost, ecofriendliness, abundant functional groups (e.g., amino, hydroxyl, carboxyl), high stability, and electron mobility. In this Outlook, we comprehensively summarize the classification of CDs based on the analysis of their formation mechanism, micro-/nanostructure and property features, and describe their synthetic methods and optical properties including strong absorption, photoluminescence, and phosphorescence. Furthermore, the recent significant advances in diverse applications, including optical (sensor, anticounterfeiting), energy (light-emitting diodes, catalysis, photovoltaics, supercapacitors), and promising biomedicine, are systematically highlighted. Finally, we envisage the key issues to be challenged, future research directions, and perspectives to show a full picture of CDs-based materials.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Carbon dots: large-scale synthesis, sensing and bioimaging

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission

              Carbon dots (CDs) have been studied for years as one of the most promising fluorescent nanomaterials. However, CDs with red or solid-state fluorescence are rarely reported. Herein, through a one-pot solvothermal treatment, hydrophobic CDs (H-CDs) with blue dispersed emission and red aggregation-induced emission are obtained. When water is introduced, the hydrophobic interaction leads to aggregation of the H-CDs. The formation of H-CD clusters induces the turning off of the blue emission, as the carbonized cores suffer from π-π stacking interactions, and the turning on of the red fluorescence, due to restriction of the surfaces’ intramolecular rotation around disulfide bonds, which conforms to the aggregation-induced-emission phenomenon. This on-off fluorescence of the H-CDs is reversible when the H-CD powder is completely dissolved. Moreover, the H-CD solution dispersed in filter paper is nearly colorless. Finally, we develop a reversible two switch-mode luminescence ink for advanced anti-counterfeiting and dual-encryption.
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                February 2023
                February 2023
                : 453
                : 139722
                Article
                10.1016/j.cej.2022.139722
                bf483ce6-700e-49e6-9408-ff4df29b2db7
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article