2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long Persistent Luminescence from Metal–Organic Compounds: State of the Art

      1 , 1
      Advanced Functional Materials
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications.

          Organic and inorganic hybrid perovskites (e.g., CH(3)NH(3)PbI(3)), with advantages of facile processing, tunable bandgaps, and superior charge-transfer properties, have emerged as a new class of revolutionary optoelectronic semiconductors promising for various applications. Perovskite solar cells constructed with a variety of configurations have demonstrated unprecedented progress in efficiency, reaching about 20% from multiple groups after only several years of active research. A key to this success is the development of various solution-synthesis and film-deposition techniques for controlling the morphology and composition of hybrid perovskites. The rapid progress in material synthesis and device fabrication has also promoted the development of other optoelectronic applications including light-emitting diodes, photodetectors, and transistors. Both experimental and theoretical investigations on organic-inorganic hybrid perovskites have enabled some critical fundamental understandings of this material system. Recent studies have also demonstrated progress in addressing the potential stability issue, which has been identified as a main challenge for future research on halide perovskites. Here, we review recent progress on hybrid perovskites including basic chemical and crystal structures, chemical synthesis of bulk/nanocrystals and thin films with their chemical and physical properties, device configurations, operation principles for various optoelectronic applications (with a focus on solar cells), and photophysics of charge-carrier dynamics. We also discuss the importance of further understanding of the fundamental properties of hybrid perovskites, especially those related to chemical and structural stabilities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging Multifunctional Metal-Organic Framework Materials.

            Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics.

              The design and characterization of thermally activated delayed fluorescence (TADF) materials for optoelectronic applications represents an active area of recent research in organoelectronics. Noble metal-free TADF molecules offer unique optical and electronic properties arising from the efficient transition and interconversion between the lowest singlet (S1 ) and triplet (T1 ) excited states. Their ability to harvest triplet excitons for fluorescence through facilitated reverse intersystem crossing (T1 →S1 ) could directly impact their properties and performances, which is attractive for a wide variety of low-cost optoelectronic devices. TADF-based organic light-emitting diodes, oxygen, and temperature sensors show significantly upgraded device performances that are comparable to the ones of traditional rare-metal complexes. Here we present an overview of the quick development in TADF mechanisms, materials, and applications. Fundamental principles on design strategies of TADF materials and the common relationship between the molecular structures and optoelectronic properties for diverse research topics and a survey of recent progress in the development of TADF materials, with a particular emphasis on their different types of metal-organic complexes, D-A molecules, and fullerenes, are highlighted. The success in the breakthrough of the theoretical and technical challenges that arise in developing high-performance TADF materials may pave the way to shape the future of organoelectronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
                Bookmark

                Author and article information

                Contributors
                Journal
                Advanced Functional Materials
                Adv Funct Materials
                Wiley
                1616-301X
                1616-3028
                May 2023
                March 18 2023
                May 2023
                : 33
                : 19
                Affiliations
                [1 ] Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals Ministry of Education College of Chemistry Beijing Normal University Beijing 100875 P. R. China
                Article
                10.1002/adfm.202300735
                e6307409-10c8-47c7-ac7a-8a68c73c4bb8
                © 2023

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article